Permanent Holding Magnet

De-energized: max. holding force through integrated permanent solenoid

Energized: holding force is compensated

Construction

Function

High holding force

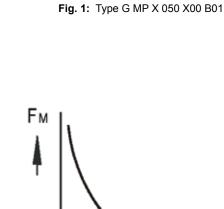
Closed circuit principle:

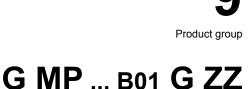
Mounting via central thread on the front side

Increasing force vs. stroke characteristic

- Insulation materials of the excitation winding correspond to thermal class B
- Electrical connection via free flexible lead ends
- Protection class according to DIN VDE/DIN EN 60529 IP 00

Application examples


- Mechanical engineering and fixture construction, conveyor technology, door holding systems
- Interlocking of all sorts


Options

Protection class IP 65 on request

Standards

- Design and testing according to DIN VDE 0580
- Production according to ISO 9001

s

Fig. 2: Force vs stroke characteristic

Technical data

G MP X X00 B01		025	030	035	050
Operating mode ED		S2 (2 s)	S2 (2 s)	S2 (2 s)	S2 (2 s)
Max. duty cycle 4)		S3 15%	S3 30%	S3 25%	S3 25%
Rated power P ₂₀	(W)	16	10	16	31
Magnetic forces using the specimen* and stroke 0 mm					
Holding force F	(N)	140	240	320	800
¹⁾ Residual holding force F_{MR} bei U_{N}	(N)	18	30	35	100
²⁾ Residual holding force F_{MR} bei I_{ab} = konst.	(N)	6	8	8	10
Magnetic forces using armature type GZZE (fig. 5) and stroke 0 mm ³⁾					
Holding force F_{M}	(N)	110	190	260	640
¹⁾ Residual holding force F_{MR} bei U_{N}	(N)	15	24	28	80
²⁾ Residual holding force F_{MR} bei I_{ab} = konst.	(N)	5	7	7	8
I _{ab} = konst.	(A)	0,55	0,35	0,5	1,1
Reference temperature ϑ_{13}	(°C)	35	35	35	35
Solenoid weight mM	(kg)	0,053	0,106	0,200	0,577
Test specimen diameter	(mm)	25	30	35	50
* Test specimen thickness	(mm)	3	4	5	6

- * The test specimen is made of 9 S Mn. The pole surface is plane and polished and has a roughness of 15 µm max. With smaller specimen thickness or bad surface quality the magnetic force decreases. The use of materials having a different permeability may lead to considerable deviations regarding the holding force.
- ¹⁾ The external return forces have to be sufficiently higher than the residual force.
- ²⁾ In order to eliminate the influence of the coil resistance (dependent on the temperature rise) on the residual force we recommend you to drive the solenoid with constant current (see also fig. 3).
- ³⁾ When using the armature GZZE the magnetic forces are reduced due to the layer thickness of the electroplating.
- ⁴⁾ The devices are designed for short-time duty S2. In principle, an operation with the indicated admissible max. duty cycle is possible. It should be noted that the residual holding force changes by heating (see also ²).

Notes on the tables

Due to natural dispersion the force values may deviate by \pm 10% from the values indicated in the tables.

Rated voltage

Rated voltage is ---- 24 V. An adaptation of the exciter coil to a rated voltage less than ---- 60 V is possible on request.

The devices correspond to protection class III. Electrical equipment of protection class III may be only connected to low voltage systems (PELV, SELV)(IEC 60364-4-4-41).

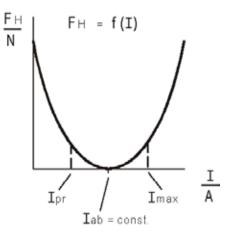


Fig. 3: characteristic

Information and remarks concerning European directives can be taken from the correspondent information sheet which is available under *Produktinfo.Magnet-Schultz.com*.

Note on the RoHS Directive

According to our current state of knowledge the devices pictured in this document do not contain any substances in concentration values or applications for which putting into circulation with products manufactured from them is prohibited in accordance to RoHS.

Please make sure that the described devices are suitable for your application. Supplementary information concerning its proper installation can be taken also from the a –Technical Explanation, the effective DIN VDE0580 as well as the relevant specifications.

This part list is a document for technically qualified personnel.

The present publication is for informational purposes only and shall not be construed as mandatory illustration of the products unless otherwise confirmed expressively.

By edition of the present list, all former unit lists lose their validity especially regarding performance ratings Illustrations without guarantee – modifications and supply availability reserved

Dimension tables

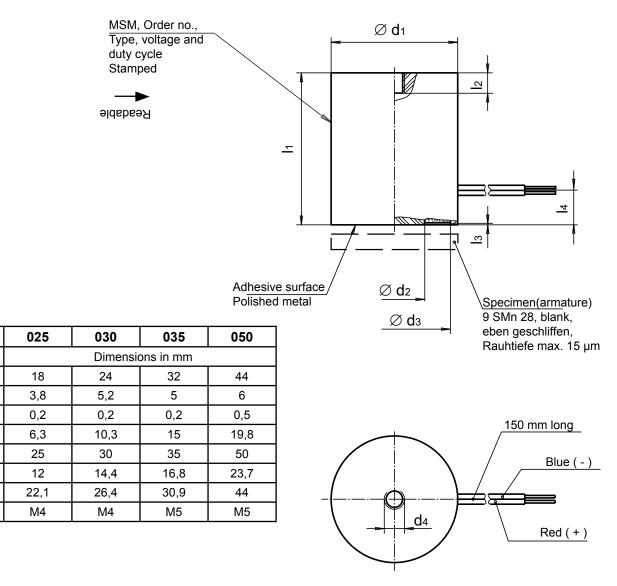


Fig. 4: Type G MP X 025 X00 B01 to G MP X 050 X00 B01

Size

Dim.

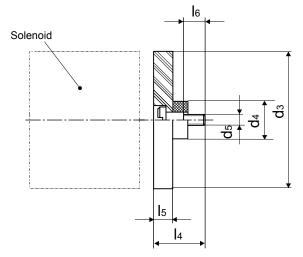
11

12

lз

4

ø d1


ø d2

ø d3

ø d4

Armatures for solenoids

G ZZ E						
Size	025	030	035	050		
Dim.	Dimensions in mm					
d3	25	30	35	50		
d4	8	10,5	10,5	10,5		
d5	M3	M4	M4	M4		
14	9,5	14	14	15		
15	3	5	5	6		
16	4,5	6	6	6		

Fig. 5: G ZZ E 025 X 00 A01 up to G ZZ E 050 X 00 A01 (size 030: ... D01)

Type code

Туре	Size	Suitable armature	Standard values, Voltage, duty cycle	
G MP X 025 X00 B01	025	G ZZ E 025 X00 A01	24V, S2	
G MP X 030 X00 B01	030	G ZZ E 030X00 D01		
G MP X 035 X00 B01	035	G ZZ E 035 X00 A01		
G MP X 050 X00 B01	050	G ZZ E 050 X00 A01		

Order example

TypeG MP X 050 X00 B01Voltage== 24 V DCOperating modeS2 (short-time duty)

Specials designs

Please do not hesitate to ask us for application-oriented problem solutions. In order to find rapidly a reliable solution we need complete details about your application conditions. The details should be specified as precisely as possible in accordance with the relevant a Technical Explanations.

If necessary, please request the support of our corresponding technical office.