Modline® 7 Infrared Thermometers

Noncontact temperature sensors to serve a wide range of applications

7V Series	72 Series	7G Series	76 Series	75 Series	77 Series	78 Series	74 Series
400 to 1200°C (752 to 2192°F) 0.9 – 0.97µ	400 to 3000°C (752 to 5432°F) 1.0µ	300 to 2250°С (572 to 4082°F) 1.6µ	100 to 600⁰C (212 to 1112ºF) 2.4µ	250 to 2250°C (482 to 4082°F) 3.9μ	250 to 2250°C (482 to 4082°F) 4.8 – 5.2μ	300 to 900°C (572 to 1652°F) 7.9µ	-40 to 800°C (-40 to 1472°F) 8-14μ
Silicon wafer MBE, silicon and gallium arsenide wafer deposition	Semiconductor, metals forging, hardening and molten glass	Ferrous, non ferrous and unoxidized metals, galvanizing lines and steel annealing	Small, low temperature targets, wire coating and annealing, as well as plastic tubing extensions	Furnace refractory, flame hardening and brazing	Glass surface temperature for bending, tempering, annealing and sealing	Ultra-thin drawn glass	Low temperature applications, such as thick plastics, food, carpeting, coated paper and thermoforming

Modline® 7 Highlights

Designed for rugged industrial environments, the Modline 7 sensors have 8 different series to choose from (7V, 72, 7G, 76, 75, 77, 78 & 74). All sensor components are sealed within an IP65 (NEMA 4) enclosure featuring standard motorized focus control, as well as through-the-lens and laser sighting. Also included is an integral stainless steel water cooled enclosure. All Modline 7 systems are backed with a 5 year warranty.

The sensing head can operate as a stand-alone sensor, providing simultaneous analog and digital outputs of process temperatures.

Sensor setup and monitoring can be accomplished either through the optional PROC-7 processor box, the rear panel of the sensor or through the Modview[™] Pro software, allowing the user to perform PC-based temperature monitoring, trending and archiving with an intuitive graphical user interface.

Alarms:

A programmable relay output can be triggered by:

- Product Temperature (process alarm)
- Sensor Internal Temperature (sensor alarm)
- Dual target temperature alarms (Proc-7 Processor box)

Manually

Communications:

- Bi-directional RS-485 communications
- Windows ModView[™] Pro Software
- Field Calibration software

Features:

- Broad temperature range -40°C to 3000°C (-40°F to 5432°F)
- Spot size down to 1mm

Performance

Accuracy	
7V	Within (0.5% of reading +1°C)
72-1716	\pm (2% of reading +2°C)* for Tmeas < 450°C (842°F)
72-3030	± (2% of reading +2°C)* for Tmeas < 650°C (1202°F
7G-1116	± (0.3% of reading +2°C)*
7G-2230	± (0.3% of reading +1°C)*
76	\pm 1% of reading for Tmeas > 150°C (302°F)
75	± 2°C or ± 2%* for Tmeas < 350°C (662°F)
77 / 78	± 1% of reading
74	\pm 2°C for Tmeas < 0°C (32°F)
*whichever is greate	r

whichever is greater	
77/78/74	\pm 0.5% of reading or \pm 0.5°C*
76/75	\pm 0.5% of reading or \pm 0.5°C*
7G	± (0.1% of reading +1°C)
72-3030	\pm (0.1% of reading +1°C) for Tmeas $>650^\circ\text{C}$ (1202°F)
72-1716	\pm (0.1% of reading +1°C) for Tmeas $>450^\circ\text{C}$ (842°F)
7V	Within 0.1% of reading (+1°C)
•	,

Temperature Resolution

72-3030 / 7G-2230 0.2°C All other models 0.1°C

Flectrical

Liootiioai	
Power Supply	24 VDC ± 20%, 500 mA
Outputs Analog	0 - 20 mA, 4 - 20 mA, 14 bit resolution, max. current loop impedance: 500 ohms.
Digital RS-485	Networkable to 32 sensors, Baud rate: 300, 1200, 2400, 9600, 19200, 38400, 57600, 115200. 4-wire mode (full-duplex) or 2-wire mode (half duplex), (2-wire: max. 38400 Baud), (Proc-7 requires 38400 2-wire mode)
Relay	Contacts max. 48 V, 300 mA, response time < 2 ms, (software programmable)
Display	5 digit backlit LCD display
External Input Voltage	0 to 5 VDC functions: trigger, ambient background temperature compensation, emissivity setting, or laser ON/OFF switching

 \pm (0.3% of reading +1°C) for Tmeas > 450°C (842°F)

 \pm (0.3% of reading +1°C) for Tmeas > 650°C (1202°F)

± 5°C for Tmeas < 150°C (302°F)

 \pm 1% of reading for Tmeas > 350°C (662°F)

 \pm 1% of reading or \pm 1°C* for Tmeas > 0°C (32°F)

 \pm (1% of reading +1°C) for Tmeas < 450°C (842°F)

 \pm (1% of reading +1°C) for Tmeas < 650°C (1202°F)

Environmental

	-				
Environmental rating	NEMA-4 (IEC 529, IP 65)				
EMI	CE compliant to IEC 61326				
Relative Humidity	10% to 95% non-condensing				
Storage Temperature	-20°C to 70°C (-4°F to 158°F)				
Ambient Temperature with integral cooling		without cooling 5°C to 65°C (41°F to 150°F) with air cooling 10°C to 120°C (50°F to 250°F) with water cooling 10°C to 175°C (50°F to 350°F)			
with high temperature	waterjacket cooling	water cooled 10°C to 315°C (50°F to 600°F)			
Vibration	MIL-STD-810D (IEC 68-2-6) 2G's,	10 - 150 Hz, 3 axis			
Mechanical Shock	MIL-STD-810D (IEC 68-2-27) 5G's	s, 11 ms duration, 3 axis			
Weight	1.95 kg (4.3 pounds)				

72-1716	\pm (2% of reading +2°C)* for Tmeas < 450°C (842°F)
72-3030	± (2% of reading +2°C)* for Tmeas < 650°C (1202°F
7G-1116	± (0.3% of reading +2°C)*
7G-2230	± (0.3% of reading +1°C)*
76	\pm 1% of reading for Tmeas > 150°C (302°F)
75	\pm 2°C or \pm 2% [*] for Tmeas < 350°C (662°F)
77 / 78	± 1% of reading
74	\pm 2°C for Tmeas < 0°C (32°F)
*whichever is greate	ſ
Repeatabi	lity
7V	Within 0.1% of reading (+1°C)
72-1716	\pm (0.1% of reading +1°C) for Tmeas > 450°C (842°F)
72-3030	\pm (0.1% of reading +1°C) for Tmeas $>650^\circ\text{C}$ (1202°F)
7G	$+$ (0.1% of reading $+1^{\circ}$ C)

PROC-7 Processor Box

The processor box is a self-contained control unit designed to operate all Modline 7 sensors independent of Modview[™] Pro software. Remote set-up and operation can be done through the digital panel when the sensor is located in hard- to-reach or hazardous locations. Configure, monitor and perform system health checks from a safe location through menu commands via RS-485 serial communication. Easily set temperature alarms, change temperature display from °F to °C, change emissivity levels, focus the sensor and turn on or off filters, such as peak hold, valley hold and averaging through a push button display. All Modline 7 menu commands are easy-to-use and ready to communicate right out of the box.

Additional features:

- IP65 rated
- Panel mount capable
- Sensor alarm
- Universal power input (100–240 VAC) 50/60 Hz
- Power supplied to sensor (24 VDC)
- Dual target temperature alarms
- Analog output (0 to 20mA, 4 to 20mAdc)
- Auxiliary analog signal input for remote emissivity adjustment, background temperature compensation, valley/peak hold reset and laser ON/OFF.

PROC-7 Enclosure Specifications

Environmental rating	IP65
Panel Ambient	0°C to 50°C (32°F to 122°F)
Construction	Aluminum/Stainless Steel
Vibration	IEC 60068-2-6
EMI	IEC 61326

Physical Dimensions

ModView Pro PC based software with built-in user interface displays target temperature and allows for sensor parameter adjustment to configure or fine tune your sensor remotely. Easily configure individual

alarms for early warning detection, change temperature display from °F to °C, set or change emissivity levels, scale the range, focus the sensor, and turn on or off filters, such as peak hold, valley hold, and averaging, as well as save data for future reference, graphing or quality record keeping.

272.6°C	272.6°C	Name (Said)			(T.)	Concernant of the local division of the loca	-		ingel 1	_
272.6°C	272.6°C	~		-	~ ~	311	27	1	12	-
		• •	7')	6	9	3838	21		2	
Jackson J	Sectors Andrea	~	–			1000	22	- 22	2	- 1
Jackeda Jackeda J	Jurbonty Junction				-	3352	122	- 11	2	- 1
		_				Jackson	Part (seas)			_
		-								
÷,	å ₁									
	÷									
Í	Í (************************************	-								
	É	-								
	Í	-								
		-								
		-								
		-								
İ	Ś									
		-								
		11111								

Easy-to-Use Interface

Modline 7 sensor with standard integral water cooling

The Modline 7 sensor with integral water cooling enclosure enables use in ambient temperatures up to 175°C (350°F).

Modline 7 sensor with optional high temperature water jacket accessory

For high ambient temperature applications, the Modline 7 with high temperature water jacket and integrated air purge enables use in ambient temperatures up to 315°C (599°F).

Modline 7 sensor with integral water cooling and optional air purge collar Modline 7 high temperature waterjacket

		Α		В	С	D	
	Series	Range	Optics	Sighting Optior	s System Opti	ons Cooling Options	
Block A	Temperature Range	Spectral Range	Optical Resolut (measured at focal	tion Respo point) Time	nse Primary App	olications	
7V-1002 7V-1205	400-1000°C (752-1832°F) 450-1200°C (842-2192°F)	0.9–0.97µm 0.9–0.97µm	D/20 D/50	100ms 10ms	Specifically d gallium arser	leveloped for MBE, silicon and nide wafer deposition	
72-1716 72-3030	400-1740⁰C (752-3164ºF) 540-3000⁰C (1004-5432ºF)	1.0µm 1.0µm	D/160 D/300	2ms 2ms	Semiconduct and molten g	tor, metals forging, hardening lass	
7G-1116 7G-2230	300-1100°C (572-2012°F) 450-2250°C (842-4082°F)	1.6µm 1.6µm	D/160 D/300	2ms 2ms	Ferrous, non and steel ann	ferrous and unoxidized metals, ga nealing	alvanizing lines
76-0607	100-600°C (212-1112°F)	2.4µm	D/70	20ms	Small, low te as well as pla	mperature targets, wire coating a astic tubing extensions	nd annealing,
75-1107 75-2207	250-1100°C (482-2012°F) 450-2250°C (842-4082°F)	3.9µm 3.9µm	D/70 D/70	120ms 120ms	Furnace refra	actory, flame hardening and brazir	ıg
77-1607 77-2207	250-1650°C (482-3002°F) 450-2250°C (842-4082°F)	4.8–5.2μm 4.8–5.2μm	D/70 D/70	60ms 60ms	Glass surface annealing and	e temperature for bending, temper d sealing	ring,
78-0910	300-900°C (572-1652°F)	7.9µm	D/100	120ms	Ultra-thin dra	awn glass	
74-0807	-40-800°C (-40-1472°F)	8-14µm	D/70	120ms	Low tempera carpeting, co	ture applications, such as thick pl ated paper and thermoforming	astics, food,
Block B	Sighting Options			Blo	ock C System Optio	ns	
0	Visible/Laser Sighting			0 1	Stand Alone Ser Processor Box v in IP65 rated en	nsor with integrated digital panel meter a nclosure	and power supply

Block D Cooling Options

0 Sensor with integral water cooling for ambient temperatures up to 175°C (350°F)

1 Sensor supplied with WJ-7 waterjacket accessory for ambient temperatures up to 315°C (600°F)

Accessories

PROC-7	Processor box with integrated digital panel meter and power supply in IP65 rated enclosure (PBAK-7 required when replacing the Modline [®] 3 processor box if panel mounted)	WJMB-7 WJMFST-7 WJST12	Adjustable mounting base for water jacket Mounting flange for use with sighting tubes 30cm (12") Stainless steel sight tube
dpm-7 Pbak-7	Digital panel meter (Individual unit only) Processor box adaptor kit (panel mount) (Used when replacing an existing Modine® 3 processor box with a Modilia, 7. (it accessible of mounting brackets & bardware)	POI-7	A terminal block mounted in a NEMA 4 (IP65) enclosure
APA-7 APS-7	Aluminum air purge collar Stainless steel air purge collar	PS-7	24VDC 1.2A Industrial power supply, DIN rail mount (100/240VAC input)
RAM-7	Stainless steel adjustable bracket	101-1	Spare terminal block accessory

The accessories shown are only a few of the many products available for Modline 7 sensors to support a variety of application needs. A complete list of power and communication accessories, protective windows and environmental protection products, as well as mounting brackets, can be found in the Modline 7 sensor manual. Please contact your local IRCON sales representative for detailed information.

The Worldwide Leader in Noncontact Temperature Measurement

IRCON, Inc. Worldwide Headquarters

Santa Cruz, CA USA Tel: 1 800 227 8074 (USA and Canada, only) 1 831 458 3900 info@ircon.com

European Headquarters

 Berlin, Germany
 United Kingdom

 Tel:
 49 30 4 78 00 80
 Tel: +44 1908 630 800

China Headquarters

Beijing, China Tel: 8610 6438 4691

To find an IRCON office near you, please visit www.ircon.com

Worldwide Service

IRCON offers services, including repair and calibration. For more information, contact your local office or e-mail info@ircon.com

Raytek is an ISO 9001 certified company

© 2012 Ircon, Inc. (4162449 Rev B) 9/2012 Ircon, the Ircon logo and Modline are registered trademarks of Ircon, Inc. Specifications subject to change without notice.