User Manual

Version 1.6

Remarks

The information provided in the manual on hand have been carefully investigated and processed. Still, we cannot assume any kind of liability regarding completeness or mistakes. However, we are always grateful to get feedback and proposals.

Claims for damages are, except in the case of premeditation or negligence, in principle excluded.

As a series of versions of this product is available, deviations from the manual on hand might occur, if applicable.

We reserve ourselves the right to implement technical modification that serves to optimize of the product without related notification. Thus, it cannot be assumed that subsequent product versions show the same properties as the one on hand.

Registered trademarks are the manufacturer's property.

VLM500 – User Manual V1.6

Copyright © ASTECH Angewandte Sensortechnik GmbH, Rostock 2010-2016

VLM500-Series as of hardware version 2015, Firmware version as of V1.20

Printed: March 2016

Revision overview

Manual revision	Date	Reviews
1.6	21.03.2016	IFPN and IFPB adapted
1.5	22.01.2016	Parameter set capability added
		Command FB2TYPE removed
1.4	18.12.2015	Changes in command POxHOLD
		Chapter Safety instructions added
		Several smaller corrections
1.3	18.11.2015	Command SELTRIGGER added
		Amendments to IUSB
1.2	08.07.2015	Minor changes
1.1	19.05.2015	Command TMax added
1.0	01.04.2015	First version

ASTECH GmbH, Schonenfahrerstr. 5, D-18057 Rostock Internet: www.astech.de Email: info@astech.de Telephone: +49 381 / 44073-0 Telefax: +49 381 / 44073-20

I. Table of Content

1	Ģ	ieneral information	9
	1.1	Information on how to work with this manual	9
	1.2	Safety instructions	9
	1.3	Introduction	10
2	F	unction	11
	2.1	Physical principle	11
	2.2	Evaluation	
	2.3	Interfaces	
	2.4	Configuration	
3	Г	evice models	13
	- 3.1	VLM500A	
	3.1 3.2	VLM500D	
	3.3	VLM500L	
	3.3 3.4	Option /h for VLM500 series	
	3.5	Summary of device models	
4		peration instructions	
5		ssembly	
6	C	onnection	19
	6.1	Current supply and grounding	19
	6.2	Signal lines	
	6.3	USB Interface	20
	6.4	RS-232 Interface	
	6.5		
	6.6	RS-485 Interface	21
7	h	nterface cards	22
	7.1	I232 – Interface RS-232	23
	7.2	I4U4 – Interface RS-422, RS-485, 4-wire cable	23
	7.3	I4U2 – Interface RS-485, 2-wire cable	23
	7.4	IUSB – Interface USB	24
	7.5	IAUN – Interface Analog Output	24
	7.6	IOPL – Interface Input-Output Positive Logic	25
	7.7	IPPL – Interface Pulse Output Positive Logic	27
	7.8	IPPU – Interface Input-Output Push Pull Universal	28
	7.9	IFPB – Interface Fieldbus Profibus	29

7.10	IFPN – Interface Fieldbus Profinet	32
7.11	IFFE – Interface Fieldbus FastEthernet	34
7.12	ILBC – Interface Light Barrier Control	36
8 M	laintenance	37
8.1	Window	37
8.2	Illumination	38
9 Pr	rogramming	40
9.1	VLMTool	40
9.2	Command Input	41
9.3	General Commands	41
9.4	Analog output	52
9.5	ECC Control	54
9.6	Pulse output via first pulse output	56
9.7	Pulse output via the second and third pulse output	57
9.8	Output via the first serial interface	58
9.9	Output via the serial interface 2	61
9.10	Commands for the light barrier controller LBC9-CA	62
9.11	Offline Measurement	63
9.12	Test Commands	65
9.13	Service commands	68
9.14	System Commands	70
9.15	Read commands	77
10 Te	echnical Data	78
	nnex	
11.1	List of commands	79
11.2	Programming examples	86
11.3	Error messages	87
11.4	Meaning of the light diodes	
11.5	Units of the output values	90
11.6	Terminal assignment	90
11.7	Plug connector	91
11.8	Article numbers	93
11.9	Dimensional and installation drawings	94
12 Co	onformity declaration	95

II. Commands of the VLM500

General commands

The command Amax	41
The command Average	41
The command <i>Calfactor</i>	42
The command <i>Clock</i>	42
The command <i>Controlhold</i>	43
The command <i>Date</i>	43
The command Direction	43
The command <i>Error</i>	43
The command <i>Errorlevel</i>	44
The command <i>Fmax</i>	44
The command <i>Help</i>	44
The command <i>Holdtime</i>	44
The command Info	44
The command <i>Minrate</i>	45
The command <i>Mode</i>	45
The command Number	45
The command Parameter	45
The command <i>Post</i>	45
The command <i>REM</i>	46
The command Seltrigger	46
The command Serialnumber	46
The command SID	46
The command Signalerror	46
The command <i>Start</i>	47
The command Stop	47
The command Temperature	47
The command Terminal	47
The command <i>Tracking</i>	48
The command Trigger	49
The command Vmax	50
The command Window	51

Analog output

The command AO	52
The command AOMax	53
The command <i>AOMin</i>	53
The command AOOn	53
The command <i>AOSync</i>	53
The command AOValue	53

ECC control

The command ECC	.54
The command <i>ECCOn</i>	.54
The command ECCR1	.54
The command ECCR2	.54
The command ECCV1	.54
The command ECCV2	.55

Pulse output

The command PO1	56
The command PO1ECC	56
The command PO1Factor	56
The command PO1Hold	56
The command PO1On	57
The command PO1Output	57
The command PO1Sync	57
The command PO1Value	57

Output via serial interface

The command SO1	. 58
The command SO1Address	. 58
The command SO1Format	. 58
The command SO1Interface	.60
The command SO1On	.60
The command SO1Sync	61
The command <i>SO1Time</i>	.61

Commands for the light barrier controller LBC9-CA

The command <i>LBC</i>	62
The command LBCD1	62
The commands LBCD2 to LBCD8	62
The command LBCOn	62

Offline measurement

The command OFF	63
The command OFFLine	63
The command OFFFactor	63
The command OFFMeasure	63
The command OFFSync	63
The command OFFRead	63
The command OFFTime	64
The command OFFValue	64

Test commands

The command T	estAO	65
The command T	estFilter	65
The command T	est10	66
The command T	estMeasure	66
The command T	estPS	66
The command T	estQuality	67
The command T	estTComp	67

Service commands

The command ListError	68
The command Password	68
The command Restart	68
The command Restore	68
The command Simulation	69
The command <i>Standby</i>	69
The command Store	69
The command <i>Update</i>	69

System Commands

The command Amplifier	71
The command <i>Bw</i>	71
The command Calibrate	72
The command Constant	72
The command Controltime	72
The command <i>Epsilon</i>	73
The command <i>Exposure</i>	73
The command <i>Expmax</i>	73
The command <i>Expmin</i>	74
The command Illumination	74
The command Illmax	74
The command Illmin	74
The command OED	74
The command Periodcount	75
The command Permax	75
The command Permin	75
The command <i>TComp</i>	75
The command <i>TMax</i>	76
The command Senslevel	76
The command SetAuto	76
The command <i>Type</i>	76
The command Video	77

III. List of figures

Figure 1: Structure of a VLM500	
Figure 2: Working distance and alignment towards the measurement object surface	17
Figure 3: Alignment towards the velocity vector	
Figure 4: VLM500 with linear unit LJ2	18
Figure 5: VLM500 with mounting plate RPL1	18
Figure 6: VLM500 Device connections	19
Figure 7: TERM board	
Figure 8: Output circuit of the IAUN card	25
Figure 9: Connection example for the IOPL card outputs	25
Figure 10: Circuitry of the IOPL card inputs	
Figure 11: Principle circuit diagram of the IPPL in Slot 4	27
Figure 12: Profinet HTML status page	32
Figure 13: HTML status page	35
Figure 14: Windows of the VLM500	37
Figure 15: Exchange of the light source	
Figure 16: Program VLMTool	40
Figure 17: Screen text Command Post	
Figure 18: Exemplary text of the command Terminal	
Figure 19 : Active length measurement or active trigger signal depending on the command Trigger	
Figure 20 : Single part measurement with VLM500 and two light barriers	50
Figure 21: Simplified operating principle of the averaging processor with 8 cycles	
Figure 22: Examples for analog output	52
Figure 23: Screen text of the command LBC	62
Figure 24: Screen text of command TestAO	
Figure 25: Screen text of command TestFilter	66
Figure 26: Screen text command TestIO	
Figure 27: Screen text of command TestMeasure	
Figure 28: Screen text of command TestPS	
Figure 29: Screen text of command TestQuality	67
Figure 30: Screen text of command TestTComp	
Figure 31: Assembly instruction for shielded plug connectors connections 1, 2, 4 and 5	
Figure 32: Assembly instruction for shielded plug connectors connection 3 (24 V DC)	
Figure 33: Assignment of the plug connector (Display on the plug page)	
Figure 34: Dimensional and installation drawings for different versions (in mm)	94

IV. List of tables

Table 1: Device models	
Table 2: Meaning of the light emitting diodes	15
Table 3: I232	23
Table 4: I4U4	
Table 5: I4U2	23
Table 6: IUSB	
Table 7: Output ranges of the analog outputs	
Table 8: IAUN	25
Table 9: IOPL	
Table 10: IPPL	
Table 11: IP5V	
Table 12: IPPP	
Table 13: Technical data of the IFPB	
Table 14: VLM parameter in the PROFIBUS	30
Table 15: IFPB	
Table 16: VLM Parameter for Profinet	
Table 17: Technical data of the IFPN	33

Table 18: IFPN	33
Table 19: Technical data of the IFFE	35
Table 20: IFFE	35
Table 21: ILBC	
Table 22: Specification for replacement window	37
Table 23: Direction setting	43
Table 24: Parameter for Tracking	48
Table 25: Trigger type	49
Table 26: Logical state diagram of light barrier controller in Trigger 4	50
Table 27: Example for the analog output (AOMin = 0 and AOMax = 100)	52
Table 28: Meaning of the parameter of PO1Hold	
Table 29: Parameter for formatting the output	58
Table 30: Format specifications of the individual parameters of the output to S1	59
Table 31: Setting of the RS-232 Interface	
Table 32: Meaning of the parameter of OFFValue	64
Table 33: Meaning of the parameters of Amplifier	71
Table 34: Meaning of the parameters of <i>Bw</i>	71
Table 36: Parameter of SetAuto	
Table 37: Read commands	77
Table 38: General commands	
Table 39: Commands for analog output	80
Table 40: Commands for ECC control	80
Table 41: Commands for pulse output 1	
Table 42: Commands for pulse output 2	
Table 43: Commands for pulse output 3	82
Table 44: Commands for serial interface 1	82
Table 45: Commands for serial interface 2	
Table 46: Commands for the light barrier controller LBC9-CA	83
Table 47: Commands for the serial offline measurement	
Table 48: Test commands	
Table 49: Read commands	84
Table 50: Service commands	
Table 51: System commands	85
Table 52: Example for programming a print log	86
Table 53: Example for programming the pulse input	
Table 54: Error during command input and processing	
Table 59: Meaning of the light diodes	
Table 60: Measuring values with units and their resolution	
Table 61: Device connection #1	
Table 62: Device connection #3, Current supply 24V/DC	
Table 63: Article numbers	93

1 General information

1.1 Information on how to work with this manual

Commands and functions are displayed in italics. The use of upper case and lower case letters serves for improving the readability:

e.g. SO2On (Command for switching on the output at the serial interface S2).

The abbreviated form recommended for the input is additionally displayed in bold letters in the syntax:

e.g. **SO1F**ormat (Command for programming the serial interface 1).

Names are enclosed in inverted commas:

e.g. 'SW1' (Switch SW1).

The following signs are used:

n	Integral number	S	String
f	Floating point number	[]	Optional
С	Sign		

The following acronyms are used for the measurement parameters:

V	Velocity	Ν	Object counter
L	Length	R	Measuring rate

1.2 Safety instructions

These safety and operating instructions should be carefully read and followed during practical work with the device. Compliance with all specified operating conditions is necessary. Failure to observe advisory notes or nonconforming product usage may cause material damage to the VLM500 or lead to wrong measurement results. Cable connectors must not be plugged or unplugged under voltage. Remember to turn voltage supply off before you begin working on cable connections.

A light emitting diode (LED) is used as the light source for the VLM500. The LED classification is subject to the potential photobiological hazard according EN/IEC 62471 named "Photobiological safety of lamps and lamp systems". They are <u>not</u> classified according EN 60825 "Safety of laser products". The lamp of the VLM500 is classified to the risk group RG-2 (moderate risk) according to the manufacturer. That means that the lamp represents no hazard due to the natural reaction to look away from bright light sources. The following advice should be considered anyhow.

Do not stare at operating lamp. It may be harmful to the eye.

1.3 Introduction

The measuring device for velocity and length VLM500 is suited for measurements on different materials. The scope of applications of the VLM in process automation is an extremely wide one. Typical applications are length measurement of web-type materials and the cutting control or post-control of sheets, profiles and tubes. The VLM500 is, among others, used with rewinders, calenders and extruders as well as with rolling mills and skin pass mills.

The VLM500 works contact-free optically and implements the physical principle of the spatial filter on the basis of a CCD sensor: Optically resolvable structures of the material surface are displayed on the CCD sensor. This converts the movement directly into a frequency from which the velocity is calculated. A consecutive internal integration calculates the length. The internal integration can simply be controlled via an external signal (Start/Stop via the input: Trigger).

The calculation of the velocity and the integration of the length are implemented signed. The direction can be controlled via an external signal. An automatic direction recognition is optionally available.

The generation of the output signals is taken over by a processor. The VLM500 can be connected to an existing control system or process data acquisition unit. All inputs and outputs are optoisolated. A RS232, USB or RS422 interface can be used as optional programming interface. A second interface is possible too (RS232, USB, RS422 or RS485 as serial interface 2).

The basic version of the VLM500 does not have any interfaces, inputs or outputs. These are optional for adapting the measuring device to all occurring requirements. Interfaces such as RS232, RS485 or field bus are implemented via different interface cards. This also applies for all inputs and outputs, for example trigger and direction.

Additional serial interfaces, an analogue output, different high-resolution pulse outputs and different bus systems are optionally available (extension card).

The device is located in an IP 65 housing. The current supply is done with a 24 VDC.

The VLM500 is an advancement of the well-known VLM320. Essential innovations of the VLM500 compared to the forerunner model are:

- Both serial interfaces are equivalently usable and bus addressable,
- Completely revised interface concept,
- USB interface,
- Compatible with the new LBC9-CA box,
- More compact housing.

2 Function

2.1 Physical principle

The VLM500 works contact-free optical and implements the spatial filter principle on the basis of a CCD sensor. Spatial filter is a generic term of a measurement principle for contact-free determination of velocity and length of moving materials. The spatial filter is based on the filtering effect of grid-shaped structures (grid modulation).

The function of the VLM500 can be described in a simplified way as follows:

The lens is aligned to the moving measurement object; the measurement object is displayed to the CCD line. The CCD line is operated as an optical grid (no image taking). A white light source is used for illuminating the measurement object. Thus, maximum surface independence is reached. Extraneous light is effectively suppressed by the procedure. Due to the grid modulation a frequency proportional to the velocity is generated when the object is moved, i.e. the measurement object structure (brightness contrast) generates a signal. This signal is in the following referred to as "burst". These bursts are evaluated by the device, i.e. the signal frequency is measured and the velocity is calculated out of this.

Several control circuits allow automated adaptation to a wide variety of materials (surface structure and brightness of the material)

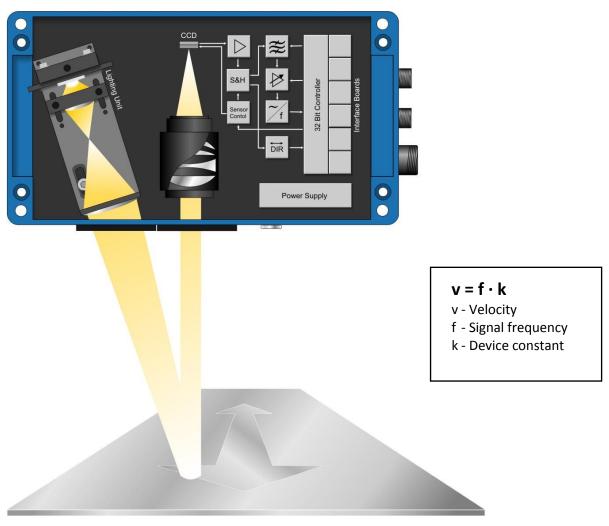


Figure 1: Structure of a VLM500

2.2 Evaluation

The frequency of the signals (bursts) is determined by the evaluation electronics of the VLM500. It implements a short-term frequency measurement by individual period evaluation. The velocity is calculated by multiplying the frequency with the device constant and the calibration factor. The length of the object can be calculated by time integration of the velocity. The integration can be controlled via an external signal (trigger).

Furthermore, the measurement rate is calculated. It can be used for optimizing the device mounting and monitoring the measurement function.

2.3 Interfaces

The VLM500 has different optional optoisolated interfaces. The measurement values can be sent to a PC, the process control unit (PLC) or a printer via serial interfaces. Different pulse outputs are available for connecting counters. Furthermore, an optional analog output is possible. The interfaces are implemented by different connection boards, which are placed on the TERM board.

All pulse interfaces are characterized by a high flexibility (programmable scaling and output time) and can be easily configured.

2.4 Configuration

All settings can be made with a PC and a terminal program via one of the two optional programming interfaces SO1 or SO2 (USB, RS-232, RS-485, USB, Profibus, Profinet, or Ethernet with protocol Telnet). The comfortable terminal program VLMTool is available for free. The single commands of the VLM500 are described in chapter 9 Programming.

The adjusted parameters can be protected by a password. Possibly made changes are discarded after the device was switched off if they were not saved with the password protected command *Store*.

3 Device models

Different device models of the VLM500 series are available, which are electrically- and connection-compatible. Most options (interface cards, assembly accessories etc.) can be used for all models.

The differences in measurement range, working distance and distance variance result from the used optics and the signal processing of the devices VLM500A, VLM500D and VLM500L.

All devices of the VLM500 series are suitable for **highly dynamic processes** (minimum update rate of 0.2ms), can be synchronized with each other (**for the highly precise and dynamic difference velocity measurement**) and have an internal length calculation. The option /h for glowing surfaces is available.

The measuring devices must not be operated out of the velocity range specified in the data sheet, otherwise no proper functioning can be guaranteed. We kindly ask you to consider the parameter *Mode*, as it directly effects on the maximum permissible velocity. The parameter *Vmax* must be set according to the actual maximum plant velocity. A reserve of 10 % was already considered in the device.

3.1 VLM500A

<u>_</u>

The VLM500A implements a working distance of 185 mm \pm 7.5 mm. It is designed as universal device and allows measurements on very different materials. The device can automatically adapt to reflection, color and structure of the material surface in an extremely wide range.

By changing the parameter *MODE* (see page 45, The command *Mode*), the working distance range can be expanded, i.e. the range where the material to be measured must be located. The extended working distance range of the VLM500A amounts to 185 mm \pm 15 mm.

3.2 VLM500D

The VLM500D is specifically designed for application on metallic surfaces and a large distance variance. The device implements a working distance of 240 mm \pm 15 mm and is characterized by a high reproducibility of \leq 0,025 %.

Measurements of velocities lower than 0.008 m/s (0.48 m/min) with a special filter board are possible.

The VLM500D can be configured for an extended working range of 240 mm \pm 30 mm if required (see page 45, The command *Mode*).

3.3 VLM500L

The device VLM500L has a working distance of 170 mm \pm 7.5 mm. It is mainly used for measuring lower velocities. The possible minimum velocity amounts to 0.004 m/s (0.24 m/min).

The VLM500L can be configured for an extended working range of 170 mm \pm 10 mm if required (see page 45, The command *Mode*).

3.4 Option /h for VLM500 series

Based on the aforementioned devices, the option /h was development for measurements on **glowing tubes**, **wires and profiles** made of steel, copper and brass etc.

The option /h implements an optical adjustment to measurements on glowing surfaces. Measurements on notglowing surfaces are still possible. Sufficient cooling is needed, depending on the environmental conditions (e.g. Cooling and Protection housing CPC1 with scavenging air supply AC5).

3.5 Summary of device models

Table 1: Device models

	VLM500A	VLM500D	VLM500L
Nominal distance and working range	(185 ± 7.5) mm	(240 ± 15) mm	(170 ± 7.5) mm
Extended working range			
	(185 ± 15) mm	(240 ± 30) mm	(170 ± 10) mm
Measuring range	0.6 to 1500 m/min	0,48 to 900 m/min	0.24 to 180 m/min
	(0.01 to 25 m/s)	(0.008 to 15 m/s)	(0.004 to 3 m/s)
 in extended working range *) 	1.2 to 3000 m/min	0.96 to 1800 m/min	0.48 to 360 m/min
	(0.02 to 50 m/s)	(0.016 to 30 m/s)	(0.008 to 6 m/s)
- with special filter FB2V	0.36 to 210 m/min	0.30 to 180 m/min	0.06 to 90 m/min
	(0.006 to 3.5 m/s)	(0.005 to 3 m/s)	(0.001 to 1.5 m/s)
- in extended range and FB2V	0.72 to 420 m/min	0.72 to 330 m/min	0.12 to 180 m/min
	(0.012 to 7 m/s)	(0.012 to 5.5 m/s)	(0.002 to 3 m/s)
Measurement uncertainty		±0,025 % for reference distance	2
DIN 1319 / ISO 3534	($\pm 0,05$ % in working distance range and $\pm 0,2$ % in extended working range)		
Reproducability		±0,025 %	
DIN 1319 / ISO 3534			
internal Length measurement range		1.000.000 km	
Information and update	From 0.2 ms additional simple to 32 fold floating average		
Optional automated direction		Yes	
recognition			
Material	New All all surfaces a	Metallic surfaces	Metallic and other surfaces
	Nearly all surfaces	wietaille surraces	Interaction and other surfaces

*) VLM500 see page 45, The command Mode

4 **Operation instructions**

After implemented programming, the VLM500 works autonomously and requires little maintenance. The maintenance is restricted to cleaning the windows if needed and exchanging the LED light source (see chapter 8, Maintenance).

Different commands can be used for diagnosis purposes during operation (see chapter 9, Programming).

Furthermore, operation modes are indicated via light emitting diodes (LED) that have the following meaning:

LED	Colour	Meaning
Signal LED	Green	Signal available or good, also see Minrate and ECCOn
Signal LED	Red	No signal available or not exceeding the determine threshold value, also see <i>Minrate</i> and <i>ECCOn</i>
Signal LED	Yellow	Device is being initialized
Busy LED	Yellow	Command processing, also during calibration, simulation, offline measurements and standby Flashes during standby mode
Error LED	Red	Flashes permanently in case of fatal errors or flashes briefly in case of critical errors (see Annex Chapter 11.3, Error messages)
Forward LED	Green	Direction of movement of the measuring object is adjusted to forward or recognized ¹ (from VLM500 bottom to lid) see also <i>Direction</i>
Backward LED	Green	Direction of movement of the measuring object is adjusted to forward or recognized ¹ (from lid to VLM500 bottom) see also <i>Direction</i>

Table 2.	Meaning	of the l	ight o	mitting	aboib
	wieannig	or the i	ignit C	muung	uloues

Signal LED

In case of moving measurement objects and sufficient signal quality, the LED lights green, otherwise red. A red signal LED may have different reasons:

- 1. No measuring object available, Measuring object outside the working range of the VLM500,
- 2. Measurement object does not move or is outside the velocity range,
- 3. Measurement object does not have sufficient structure,
- 4. Measuring object too bright Sensor is permanently overdriven, see page 66, The command *TestMeasure*,
- 5. Windows dirty (see see chapter 8, Maintenance),
- 6. Measurement rate too low (only with activated rate monitoring, see page 45, The command *Minrate*
- 7. Velocity or measuring rate outside the permissible range

(only with activated ECC function only, see chapter 9.5, ECC Control).

The output 'STATUS' is switched as the signal LED. As soon as it lights green, 'STATUS' is switched on.

Busy LED

This LED lights yellow when commands are processed (see chapter 9, Programming) or during offline measurements (see chapter 9.11). The LED flashes when, the standby mode is activated either by command input or by an external logic signal at the standby input.

¹ For option Automated Direction Recognition only ASTECH GmbH

Error LED

If the red Error LED lights permanently, a technical defect has occurred. If it lights briefly or permanently during operation, parameters are wrongly set or transfer errors have occurred. In all cases, the reason should be determined and removed with a PC and the command *Error* as errors with the measurement results may occur otherwise.

The Signal LED and the Busy LED lights yellow and the Error LED red during the initialization after switching on the device or after the command *Restart*.

Forward LED

The Forward LED lights green if the set direction of movement of the measurement object is Forward, i.e. from VLM500 bottom to lid (see page 43, The command *Direction*). In case of automated direction recognition, this LED displays that a forward movement of the measurement object was recognized. The movement direction (plus means forward) is marked by an arrow on the device.

Backward LED

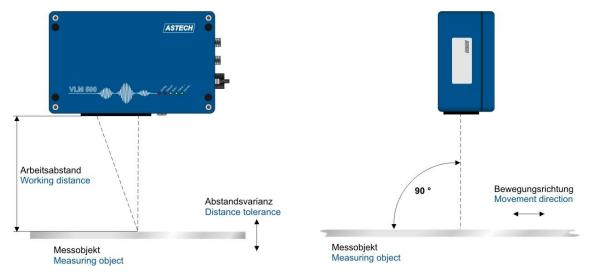
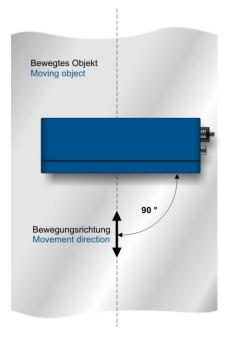
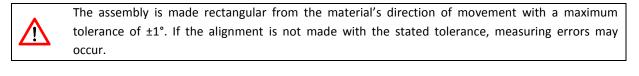
The Backward LED lights green if the set direction of movement of the measurement object is Backwards, i.e. from VLM500 lid to bottom (see page see page 43, The command *Direction*). In case of automatic direction recognition, this LED displays that a backwards movement of the measurement object was recognized. The movement direction (minus means backwards) is marked by an arrow on the device

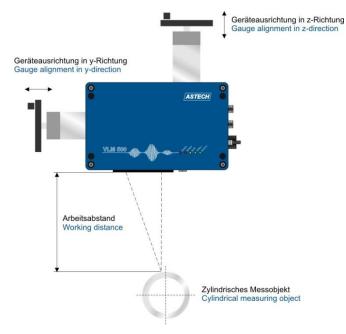
5 Assembly

The assembly is done transversally to the direction of movement of the measuring object (see drawing in the annex chapter 11.9; special versions are possible). The standard direction of movement (forward) is determined as from housing bottom to housing lid (special versions are possible). The movement direction (plus means forward) is marked by an arrow on the device.

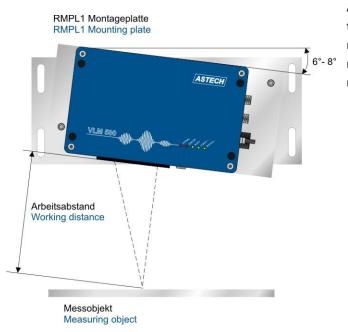
It is not necessary to open the device for assembly. The VLM500 is fastened with four M6 hexagon socket bolts.

The working distance stated by the manufacturer (the distance between the lens window to material surface) and workspace must be strictly observed (see type sign at the VLM500).


Figure 2: Working distance and alignment towards the measurement object surface

Angular orientation with maximum tolerance of $\pm\, 1^\circ$


Figure 3: Alignment towards the velocity vector

Optional linear units also allow an adjustment in case of changing material distances (\Box 1 for one axis) or for round surfaces as e.g. pipes, wires and profiles (\Box 2 for two axes).

Figure 4: VLM500 with linear unit LJ2

A tilt around the velocity sector is possible if the mounting plate RPL1 is used. No vectorial measurement error occurs from this. The tilt is needed for measurements on highly-reflective materials and some plastic surfaces.

Figure 5: VLM500 with mounting plate RPL1

An optimization of the alignment in case of reflecting or convex surfaces makes sense after the current supply, the programming cable and a PC were connected with the command *TestQuality* (see page 67, The command *TestQuality*). There should be a maximum measurement rate in the movement; or the output value during standstill should reach about 2/3 of the maximum value (reflection).

6 Connection

The VLM500 has screwable device connectors. A grounding screw, a connector for the programming interface, a connector for signal lines (inputs and outputs) and a current supply connector are available. Two more connectors for signal lines are optional.

 \triangle

Plug connectors must not be plugged in or disconnected when under voltage. All connection works must be carried out in dead-voltage state!

Connection 4, Signals (optional) Connection 5, Signals (optional) Grounding screw

Connection 1, Programming Connection 2, Signals Connection 3, Current supply

Figure 6: VLM500 Device connections

6.1 Current supply and grounding

The VLM500 is manufactured and delivered with a 24 V DC power supply (20 to 30 V). The supply is done via device connection 3.

A grid cable with detachable safety plug is included into the supply in Germany. All clamps in the connector plugs (except of DSUB9 at the programming cable) are screwable. The user is responsible for establishing the connection in accordance with the valid regulation.

Before the device is connected to the current supply, a connection must be established between grounding bolt and the device holder by using the enclosed grounding cable. The device holder must be earthed via a low impedance, too!

A missing or insufficient grounding of the measuring device may result into malfunctions or damages of the electronic assembly in case of overvoltages!

6.2 Signal lines

There is a circuit board (TERM board) with a bolt clamping field in the device. It is accessible after removing the housing lid. The device must be principally disconnected from the current supply before opening the housing. There are several options for assigning the connections. As the assignment can be changed by the manufacturer as well as by the user it must be checked before establishing the connection.

For transferring signals (device connections 1, 2, 4 and 5), shielded plugs and cables must always be used. The cable for programming (device connection 1) must be removed after successful programming. The shielding must always be grounded. Plug and cable can be purchased from the manufacturer.

The device connection 4 and 5 are optional. Not wired device connections must be protected with blind stoppers against penetration of dirt.

The wiring of the device connections 1, 2, 4 and 5 is made according to customer specification. They might (depending on the model) not be protected against permutation. A wiring diagram is enclosed to every device at the time of delivery!

The assignments of the device connections are displayed in the annex (chapter 11.6).

It must be considered that the potential differences of the input and output signals to and from the protective conductor (PE) are lower than 42 volts. It is recommended to connect the GND cable of the plant voltage via a potential equalization with the ground or the PE conductor.

<u>/i/</u>

The protective circuits integrated on the connection and interface cards respond to voltage differences > 42 Volt between the signals or towards the protective circuit. The discharging of overvoltage can result into an activation of the protective circuit and, thus, into a short-term dropout of the relevant signal!

6.3 USB Interface

The VLM500 can be parameterized via a computer with the aid of the galvanically isolated USB interface. Furthermore, the interface can be used for data recording.

The signals '5V', 'D-', 'D+' and 'GND' are used. The USB interface is an internal RS-232 interface (virtual COM port) which is transferred to USB with a chip manufactured by the company FTDI.

6.4 RS-232 Interface

The RS-232-interface (galvanically isolated) serves for parameterizing and data recording via computer at the VLM500. The RS-232-interface as COM port is integrated at computers or can be refitted via an external USB/RS-232 converter.

Due to the galvanic isolation, the RS-232 interface is also suitable for industrial environments.

The interface allows full duplex operation, i.e. the participant can send and receive data from other participants at the same time.

Only the signals TxD, RxD and GND are used. The data transmission is controlled via the XON/XOFF protocol (software handshake), i.e. if the receiver is not ready to receive it sends the signal XOFF to the sender that, thereupon, interrupts the sending. As soon as the receiver is ready again, it sends the XON signal. Thereupon, the sender continues the transmission.

Physical transmission parameters RS-232

Maximum wire length	15 m (30 m with low-capacity special cable)
Maximum sending level	±15 V
Minimum sending level	±5 V
Minimum reception level	±3 V
Load resistance	3 to 7 kOhm
Load capacity	≥ 2500 pF

6.5 RS-422 Interface

The RS-422 interface serves for serial data transmission over larger distances. At the VLM500, the RS-422 interface is used for programming and transmitting measuring values. Furthermore, it might be useful to change the programming interface (RS-232) for RS-422 to bridge distances.

The interface enables full duplex operation, i.e. a participant can send and receive data from a second participant at the same time.

Ten RS-422 recipients maximum can be connected to a sender. The serial data are transferred as voltage difference between the two wires of a cable.

Physical transmission parameter RS-422:

Maximum wire length	1200 m depending on cable and transmission rate
Maximum sending level	±5 V
Minimum sending level	±2 V
Minimum reception level	±200 mV
Load resistance	1x 120 Ohm at the end of the wire (recipient termination)

Pulses can also be transferred via a RS-422 interface. This is possible because the standard determines level, impedances etc. only, but not the type of data. The interface card IP5V for instance, provides pulse output channels with two phases each according to RS-422 standard with a maximum sending level of ± 5 V.

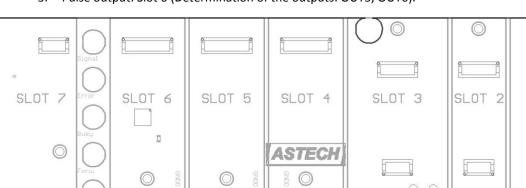
6.6 RS-485 Interface

The RS-485 interface serves for serial data transmission over longer distances. The interface allows only half duplex operation, i.e. only one participant each can send. 32 participants maximum can be connected. The serial data are transferred as voltage difference between the two wires of a cable.

Physical transfer parameter RS-485:

Maximum wire length	1200 m depending on cable and transmission rate
Maximum sending level	±5 V
Minimum sending level	±1,5 V
Minimum reception level	±200 mV
Load resistence RS-485	120 Ohm each on both ends of the wire (termination) and a "receiver- open-circuit-fail-save" circuit

At the VLM500, the S2 interface can be operated as RS-485 (half duplex operation). The half duplex operation must be obligatory be set via the parameter H in the command *SO2Interface* (see page 60, The command *SO1Interface*). If several participants shall send, the addressing must be used (see page 58, The command *SO1Address*).


1 8

7 Interface cards

The VLM500 can, if necessary, be provided with different interface cards that are plugged on the TERM Board. There are seven slots (slot 1 to slot 7) in total available for different interface cards. A screw terminal block with 54 connections (see Figure 7) is located on the TERM Board. According to which cards are used, the connections have different meaning.

Slot 2 is dedicated to the 1st serial interface of the VLM. The 2nd serial interface of the VLM is assigned to slot 3. The VLM500 can be provided with three pulse outputs. The following connections apply here:

- 1. Pulse output: Slot 4 (Determination of the outputs: OUT1, OUT2)
- 2. Pulse output: Slot 5 (Determination of the outputs: OUT3, OUT4)

3. Pulse output: Slot 6 (Determination of the outputs: OUT5, OUT6).

Figure 7: TERM board

.

In addition to the connections that connect an interface card with a flange cable, there are connections that are bridged to the screw terminal block. This enables the distribution of a signal (e.g. ext. voltage for the pulse outputs) to several connections. The following pins are bridged: 53 and 54, 24 and 25, 16 and 17 and also 8 and 9.

Pins 1, 3 and 5 carry 24 V potential with the concerning ground on pins 2 and 4. It has to do with the same potential with which the VLM is supplied externally. This voltage can be used, for example, to supply the OpenCollector connections.

The interface cards are described in the following sections. It is depicted in one table each which slot the card can be used in and which dedicated connection of the screw terminal block is used.

7.1 **I232** – Interface RS-232

The interface card I232 provides a serial interface according to RS-232 standard. It is used for programming the device and can also be used for data transmission. The optically isolated connections 'RxD', 'TxD' and 'GND' are available. An I232 card can be inserted in the slot 2 or 3. Up to two of these interface cards can be used.

Table 3: I232

Signal	Connection		
	Slot 2	Slot 3	
RxD	41	37	
TxD	40	36	
GND	38	34	

The setting of baud rate, protocol type and parity is made through the command *SO1Interface* or *SO2Interface*. The format is preset to 8 data bits and 1 stop bit. The standard parameters are 9600 bauds, no parity and XON/XOFF Protocol.

7.2 I4U4 – Interface RS-422, RS-485, 4-wire cable

The interface card I4U4 provides a serial 4-wire interface according to RS-422 or RS-485 standard. It is used for programming the device and can also be used for data transmission. The optically isolated connections 'R+/A', 'R-/B', 'T+/Y' and 'T-/Z' are available. An I4U4 card can be inserted in slot 2 or 3. Up to two of these interface cards can be used.

Table 4: I4U4

Signal	Connection		
	Slot 2	Slot 3	
R+/A	41	37	
R-/B	40	36	
T+/Y	39	35	
T-/Z	38	34	

Settings of baud rate, protocol type and parity are set by the command *SO1Interface* or *SO2Interface* like in I232.

7.3 I4U2 – Interface RS-485, 2-wire cable

The interface card I4U2 provides a serial 2-wire interface according to the RS-485 standard. It is used for for data transmission to e.g. counters. The optically isolated connections R+/T+/A' and R-/T-/B' are available. An I4U2 card can be inserted in slot 2 or 3. One of this interface cards can be used.

Table 5: I4U2

Signal	Connection	
	Slot 2	Slot 3
R+/T+/A	41	37
R-/T-/B	40	36

The settings of baud rate, protocol type and parity are set by the command SO1Interface or SO2Interface.

7.4 IUSB – Interface USB

The interface card IUSB provides an USB interface. It is used just like the interface cards I232, I4U2 and I4U4 for programming the device and for data transmission. Here the optically isolated connections '5V', 'D-', 'D+', 'D' and 'GND' are available. An IUSB card can be inserted in slot 2 or 3. Up to two of these interface cards can be used.

Table 6: IUSB

Signal	Connection		
	Slot 2	Slot 3	
5V	41	37	
D-	40	36	
D+	39	35	
GND	38	34	

The interface card IUSB includes an integrated circuit (FT230X) from Future Technology Devices International (FTDI). This chip provides a virtual serial port on the connected PC. This allows a communication like a VLM500 equipped with an I232 interface board. To ensure the communication a special driver from FTDI needs to be installed. This driver is stored on the USB bar which is part of the scope of delivery.

Windows needs to be started entirely. Then the ZIP-file "IUSB_driver_FTDI.zip" from the USB bar needs to be unzipped to a known folder on a hard disk drive of the PC. Now the VLM500 can be connect to the PC. First connect the one end of the cable to the VLM and after that connect the other end to the PC. Windows now should detect a new hardware component. In the manual installation of the driver the folder to where the ZIP-file was extracted before needs to be entered. After the installation the entry "USB Serial Converter" can be found in the device-manager of Windows. After that Windows detects another hardware component named "USB Serial Port". Again the path of the ZIP-File content needs to be entered in the manual installation. After the complete installation a new COM-port is visible in the device-manager of Windows. This one needs to be selected when the software VLMTool or another terminal program is used.

Note: For the installation of the driver the VLM500 does not need to be switched on. The FT230X is USB-powered and allows the installation of the driver.

If the VLMTool is installed, the user is asked to install the IUSB-driver as well. Those users having an IUSB-board it is recommended to install the driver at this point. Keep in mind to connect the VLM to the PC after the installation of the driver package.

7.5 IAUN – Interface Analog Output

The IAUN interface card provides an optically isolated analog output (current interface) with 16 bit resolution. There are three designs (see Table 7).

Interface card	Output range
IA00	0 mA to 20 mA
IA04	4 mA to 20 mA
IA40	0 mA to 24 mA

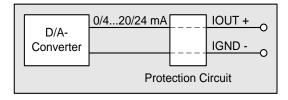


Figure 8: Output circuit of the IAUN card

One IAUN card can be inserted into slot 7.

Table 8: IAUN

Signal	Connection
	Slot 7
020 / 4 20 / 0 24 mA	7
GND	6

7.6 IOPL – Interface Input-Output Positive Logic

The expansion card IOPL provides the inputs and outputs (Trigger 1, Standby, Direction, Status, Error) of VLM. The connections are isolated galvanically (optocoupler) from VLM500. The standby input can be used as well as a trigger input (Trigger 2). Therefore the parameter SELTRIGGER needs to be activated.

Outputs

The outputs are implemented as transistor outputs with a common collector terminal. The plus connection is generally used with an external voltage supply of 10 V to 30 V. On a negative connection (e.g. ERR-) a load to 0 volt of the external power supply is connected.

The output transistors can drive a max. current of 30 mA each. If an external voltage of 24 V is used and should a load current of 20 mA flow, then a load resistance of 1.2 kOhm is set. The load can also be an optocoupler from the side of the user.

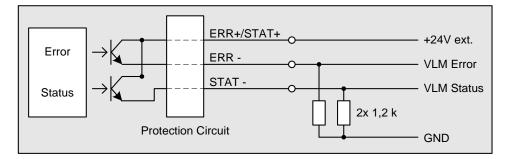


Figure 9: Connection example for the IOPL card outputs

Inputs

Generally: An input current of -40 mA to +0.3 mA or an input voltage < +2 V corresponds to a LOW level and a current of +5 mA to +40 mA or a voltage of > +10 V corresponds to a HIGH level.

The input for the direction signal Direction can be HIGH- or LOW active. The programming takes place over the command *Direction* (see Page 45, The command Direction).

The input for the standby signal is HIGH active.

The trigger input 'TRI1' serves to control the length calculation. It is programmed through the parameter *Trigger* (see Page 52, The command Trigger) (HIGH- or LOW level or edge) and realizes the Start or Stop of the device internal length integration. Furthermore the output channels can be synchronized to the Trigger (e.g. Parameter *SO1SYNC 1* switches the data output of the serial interface S1 on Trigger synchronous).

Standby-Eingang als zweiten Triggereingang (TRI2) verwenden

A second light barrier can be connected to Trigger input 'TRI2'. Thereby a length measurement over two light barriers is possible. The light barrier connected to TRI1 functions fixedly as START light barrier, the one on TRI2, on the other hand, fixedly as STOP light barrier. This function is activated over the parameter *Trigger* (see Page 49, The command *Trigger*).

The maximum input frequency must not be exceeded with TRI1, TRI2 and DIR 500 Hz. The duty cycle must hereby be 1:1. The input signal must be absolutely bounce-free. The use of relay contacts is not allowed!

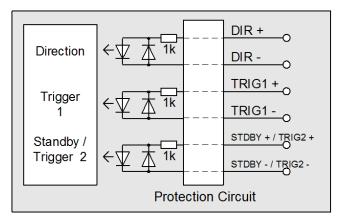


Figure 10: Circuitry of the IOPL card inputs

One IOPL card can be inserted into Slot 1.

Table 9: IOPL

Signal	Connection
	Slot 1
DIR+	52
DIR-	51
TRI1+	50
TRI1-	49
STANDBY+/TRI2+	48
STANDBY-/TRI2-	47
ERR+/STAT+	46
ERR-	45
STAT-	44

7.7 IPPL – Interface Pulse Output Positive Logic

The expansion card IPPL provides a high-resolution pulse output with two phases in a frequency range of 0.2 Hz to 25 kHz. The resolution and the maximum error are 8 ns each. A cable with a maximum length of 50 m can be connected to this connection.

The two outputs are isolated galvanically by optocouplers. The output is scalable. A 90° out-of-phase clock is provided. The transistors of the octocouplers drive a max. current of 30 mA each. The required external voltage is 24 volt. Load resistances of 1.2 kOhm each are set in order to reach a load current of 20 mA. The load can also be an optocoupler. The outputs are protected against short circuit and overvoltage.

An IPPL card can be plugged up to three times in the VLM in the slots 4, 5 and 6.

Table 10: IPPL	Tab	le 1	0: I	PPL
----------------	-----	------	------	-----

Signal		Connection	
	Slot 4	Slot 5	Slot 6
Phase 1 +	31 (OUT1+)	23 (OUT3+)	15 (OUT5+)
Phase 1 -	30 (OUT1-)	22 (OUT3-)	14 (OUT5-)
Phase 2 +	29 (OUT2+)	21 (OUT4+)	13 (OUT6+)
Phase 2 -	28 (OUT2-)	20 (OUT4-)	12 (OUT6-)

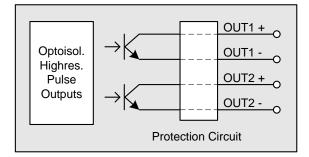


Figure 11: Principle circuit diagram of the IPPL in Slot 4

7.8 IPPU – Interface Input-Output Push Pull Universal

The expansion card IPPU provides a high-resolution pulse output with two phases (90° phase shift) in a frequency range of 0.2 Hz to 4 MHz. The resolution and the maximum error are 8 ns each. The output resistance is 200 Ohm. The maximum output current is \pm 100 mA per channel. The outputs are provided with a switch-off fuse in case of a thermal overload (e.g. due to excessive current). The outputs are isolated galvanically by optocouplers, but possess the same ground potential. The maximum cable length in asymmetrical operation (ground potential O-GND) is 200 m or 500 m in output frequencies below 50 kHz.

There are two variants of these interface cards.

IP5V

The outputs are executed as 5 V driver stages. No external power supply is required. An IP5V card can be plugged up to three times in the VLM in the slots 4, 5 and 6.

Table 11: IP5V

Signal		Connection	
	Slot 4	Slot 5	Slot 6
Phase 1	31 (OUT1)	23 (OUT3)	15 (OUT5)
Phase 1 negated	30 (/OUT1)	22 (/OUT3)	14 (/OUT5)
Phase 2	29 (OUT2)	21 (OUT4)	13 (OUT6)
Phase 2 negated	28 (/OUT2)	20 (/OUT4)	12 (/OUT6)
O-GND	26	18	10

The cards can drive RS-422 outputs with a 100 Ohm terminating resistor. Thus, the pickup occurs symmetrically between OUTx and /OUTx. The connection O-GND is not connected. In using pair-twisted and shielded cable (e.g. CAT5), the maximum cable length for the RS-422 is 500 m.

IPPP

The driver stages of the outputs are provided with an additional voltage (V_{ext}) between +12V and +30V that also determine the voltage level of the pulse. This auxiliary voltage is fed externally over a cable and is connected by connection flange with the screw terminal strip. Alternatively, the VLM supply voltage (24V) can be used. In this case, a cable bridge must be put on the screw terminal strip. An IPPP card can be plugged up to three times in the VLM in the slots 4, 5 and 6.

Table 12: IPPP

Signal		Connection	
	Slot 4	Slot 5	Slot 6
Phase 1	31 (OUT1)	23 (OUT3)	15 (OUT5)
Phase 1 negated	30 (/OUT1)	22 (/OUT3)	14 (/OUT5)
Phase 2	29 (OUT2)	21 (OUT4)	13 (OUT6)
Phase 2 negated	28 (/OUT2)	20 (/OUT4)	12 (/OUT6)
V _{ext}	27	19	11
O-GND	26	18	10

The outputs of the expansion card IPPU are protected against ESD. Do not connect an external voltage to the input. This will destroy the according input. Voltages > +30V on V_{ext} (IPPP) are prohibited.

7.9 IFPB – Interface Fieldbus Profibus

The interface card IFPB enables the connection of the measuring devices of the VLM Series to a Profibus-DP Master. The card supports bus rates of up to 12 MBaud (auto-detect).

The slave address is set over the bus (e.g. Siemens PG or any master with SET_SLAVE_ADD_REQ).

A terminal resistance is located in the delivery of the VLM. The last device on the bus is provided with a terminal resistance. The connection takes place over two standardized circular connectors M12 B coding (IEC 60947-5-2, e.g. company binder).

The parameter setting of the measuring device VLM takes place over an I232 or IUSB Interface (connection 1). The VLM parameter to be adjusted can be taken from Table 14.

Applications

- Interface card Profibus DP for VLM Series
- Output of velocity and measuring rate as well as length (optional), illumination and exposure to the Profibus Master; VLM error number as user diagnosis
- The measuring device can be set in Standby Mode by the Profibus Master.
- Control of the outputs DIR (direction), TRI1+2 (Trigger) and Standby by the master.

Configuration

The interface card IFPB is configured as DP standard slave. The IFPB determines, by means of the amount of the Profibus input bytes, which mode is used by the first parameter setting after turning on the VLM. The modes 1 to 5 output binary data on the Profibus.

It is important to note that the parameter setting of VLM corresponds with the used mode (see overleaf Table).

The interface card behaves as a DP standard slave. The data are read consistently as block from the master (e.g. Siemens S7: SFC 14 "DPRD_DAT", read consistent data, out a DP standard slave).

User diagnosis

The VLM error numbers are output as a 2 byte user diagnosis (length and error code, meaning see manual of error codes). In case of errors in the assembly IFPB, 4 byte diagnosis is returned (lengths, error codes of VLM, error codes of IFPB and system error codes of IFPB).

Table 13: Technical data of the IFPB

Field bus ID	Settable via bus (is saved on the card)
ID-Number	0x2079 (8313)
Field bus baud rate	U to 12 MBaud (Autodetect)
Bus connection	External via pluggable termination resistor
Feld bus connection	2x circular connector M12x1 B coding IEC 60947-5-2

Table 14: VLM parameter in the PROFIBUS

Mode ¹⁾	Profibus IN (IFPB Output)	VLM Parameter SO2FORMAT	VLM Parameter SO2TIME ³⁾	Profibus Configuration	Profibus Configuration bytes
M1	16 Bit counter, 32 Bit velocity, 16 Bit measuring rate ²⁾	Ζ	≥ 12 ms	8 Byte IN, 1 Byte OUT	151 32 (0x97 0x20)
М2	 16 Bit counter, 32 Bit velocity, 16 Bit measuring rate, 32 Bit Integral of the velocity, 32 Bit 1 ms timer ²⁾ 	Ζ	≥ 17 ms	16 Byte IN, 1 Byte OUT	215 32 (0xD7 0x20)
М3	 16 Bit counter, 32 Bit velocity, 16 Bit measuring rate, 8 Bit Illumination, 8 Bit Exposure²⁾ 	Z I:H:2 E:H:2	≥ 17 ms	10 Byte IN, 1 Byte OUT	153 32 (0x99 0x20)
M4	16 Bit counter, 32 Bit velocity, 16 Bit measuring rate, 32 Bit length ²⁾	Z L:H	≥ 15 ms	12 Byte IN, 1 Byte OUT	155 32 (0x9B 0x20)
М5	 16 Bit counter, 32 Bit velocity, 16 Bit measuring rate, 32 Bit length, 8 Bit Illumination, 8 Bit exposure ²⁾ 	Z L:H I:H:2 E:H:2	≥ 20 ms	14 Byte IN, 1 Byte OUT	157 32 (0x9D 0x20)

¹⁾ Compatible with the B mode of the previous versions; from version 5 on: Clear Error with Bit 4 profibus OUT and error number as user diagnosis

²⁾ Scaling: Velocity in 0.00001 m/s; Length in 0.0001 m; Rate in 0.1%; all values as one amount!

³⁾ With every change of the Bytes Profibus OUT, additional 3 ms are needed

Example: synchronous task (SO2SYNC 1) for every edge of TRI1 +3 ms, i.e. +6 m

Profibus OUT

Bit 7	Bit 6	Bit 5	Bit 4	Bit3	Bit 2	Bit 1	Bit 0
Enable ⁴⁾	Restore ⁴⁾	Restore ⁴⁾	Clear 5)	TRI1	TRI2	DIR	Standby
Restore	Bit 1	Bit 0					

⁴⁾ Enable Restore command (The command *Restore*, Page 68), Bit 1 and Bit 0 = Parameter set (binary coded) Example: Load parameter set 2: Profibus Out: 110XXXXX (X = don't care)

⁵⁾ Transition 0 to 1 deletes Error and Diagnosis data (see manual ERROR)

Parameter for VLM

SO2ON 1	(mandatory)
SO2INTERFACE 57600 N	(mandatory)
SO2FORMAT Z	(e.g. Mode M1, see table)
SO2SYNC 0	(e.g. synchronous)
SO2TIME 20	(e.g. 20 ms, see table)
AVERAGE 20	(mostly like SO2TIME)

Version information

IFPB Hardware as of V1.0; IFPB Script as of version 1.0; GSD-File revision 1.0; VLM500 Firmware as of V1.06

One IFPB card can be inserted into slot 3.

Table 15: IFPB

Signal	Connection		
	Slot 7		
5V	37		
А	36		
0V	35		
В	34		
А	33		
В	32		

7.10 IFPN – Interface Fieldbus Profinet

The interface card IFPN connects measuring devices of the VLM500 series with Profinet networks. This allows a communication between evaluation units and the measuring device over long distances by using standardized network components.

The Current Measuring Values can be output permanently and trigger-synchronous. Furthermore, it is possible to control the trigger signals (TRI1 and TRI2), the direction signal (DIR) and Standby via Profinet.

The IFPN provides a HTML page with status information via the measuring device which can be accessed by means of the http protocol via every web browser.

Communication

- Settings of the internal serial interface VLM500 (S2)
 - Serial interface S2 of the VLM must be set to determined parameters
 - **SO2ON 1** (mandatory)
 - SO2INTERFACE 57600 N (mandatory)
 - SO2FORMAT Z L:H (z.B. M4 Mode, see table)
 - SO2SYNC 0 (z.B. synchronous)
 - (z.B. 20 ms, see table)
 - SO2TIME 20 AVERAGE (mostly like SO2TIME)
- HTTP
 - Status information via HTTP (Port 80) available via browser
 - Dial IP address of the VLM500 via http://
 - VLM500 responds to HTML page

Sensor Page	ASTECH
PRO	DFINET IO Configuration
Device Name:	vlm-pn
Vendor ID	797
Device ID	4097
	IP Configuration
IP Address:	192.168.0.52
Subnet Mask:	255.255.255.0
MAC Address:	00-14-11-6F-69-AC
Gateway Address:	192.168.0.1
Sensor Page:	V1.0

Figure 12: Profinet HTML status page

Configuration

The configuration of the IFPN is done via the Profinet IO Controller. Interface specific parameters such as the IP address to be used, the subnet mask, the gateway, the name or the mode can be changed.

Mode	Profinet IN (IFPN output)	VLM Parameter SO2FORMAT	VLM Parameter SO2TIME
Μ1	16 Bit counter, 32 Bit velocity, 16 Bit measurement rate ¹⁾	Ζ	≥ 12 ms
M2	 16 Bit counter, 32 Bit velocity, 16 Bit measurement rate, 32 Bit Integral of the velocity, 32 Bit 1 ms timer ¹⁾ 	Ζ	≥ 17 ms
М3	 16 Bit counter, 32 Bit velocity, 16 Bit measurement rate, 8 Bit Illumination, 8 Bit Exposure ¹⁾ 	Z I:H:2 E:H:2	≥ 17 ms
Μ4	16 Bit counter, 32 Bit velocity, 16 Bit measurement rate, 32 Bit length ¹⁾	Z L:H	≥ 15 ms
Μ5	 16 Bit counter, 32 Bit velocity, 16 Bit measurement rate, 32 Bit length, 8 Bit Illumination, 8 Bit Exposure ¹⁾ 	Z L:H I:H:2 E:H:2	≥ 20 ms

Table 16: VLM Parameter for Profinet

¹⁾ Scaling: Velocity in 0.00001 m/s; Length in 0.0001 m; Rate in 0.1%; all values as one amount!

Control byte

Bit 7	Bit 6	Bit 5	Bit 4	Bit3	Bit 2	Bit 1	Bit 0
Enable ²⁾	Restore ²⁾	Restore ²⁾	Clear ³⁾	TRI1	TRI2	DIR	Standby
Restore	Bit 1	Bit O					

²⁾ Enable Restore command (The command *Restore*, Page 68), Bit 1 and Bit 0 = Parameter set (binary coded) Example: Load parameter set 2: Profinet: 110XXXXX (X = don't care)

³⁾ Transition 0 to 1 deletes Error and Diagnosis data (see manual ERROR)

Table 17: Technical data of the IFPN

Network type	Profinet IO, 100 Mbit
Connection	Circular connector M12, 4-pole, D-coded binder series 715

An IFPN card can be inserted into slot 3.

Table 18: IFPN

Signal	Connection	
	Slot 7	
T+	37	
R-	36	
T-	35	
R+	34	

7.11 IFFE – Interface Fieldbus FastEthernet

The interface card IFFastEthernet (IFFE) connects measuring devices of the VLM500 series with Ethernet networks. This enables a communication between evaluation units and the measuring device over long distances by using standardized network components.

By using the network protocol TCP/IP and telnet, the Ethernet interface can be used like the serial interface of the device as long as there is an active connection. The known command syntax is used for setting the parameters.

The current measuring values can be output permanently and trigger-synchronous. With appropriate wiring it is possible to control the trigger signals (TRI1 and TRI2) via Ethernet.

The IFFE provides, in addition to the Telnet server, a HTML page with status information via the measuring device which can be accessed by means of the http protocol via every web browser

A very helpful function when setting up and monitoring the VLM500 with Ethernet interface is the search for measuring devices that exist in the network via a determined UDP broadcast.

Communication

- Setting up the internal serial interface VLM500 (S2)
 - Serial interface SO2 of the VLM must be adjusted to determined parameters
 - Parameter: SO2Interface 115200 X N D
 - For permanent data output see the Serial Interface description in the VLM manual
- UDP
 - Search for devices in the network via broadcast telegram
 - Reading out device type, serial number, IP address and connection status
 - List port with VLM500 = 33300
 - Identification for ASTECH devices = 0x05
 - Response data: Type, Version, Serial number, IP address, MAC address, Connection status
- TELNET
 - Connection oriented 8Bit-ASCII communication via TCP/IP
 - Connection establishment caused by the Client
 - List port = 23
 - Command syntax as on serial interface
 - Use of conventional Telnet-Client program possible (e.g. Ethertool, Hyperterm)
 - One connection per time minimum
- HTTP
 - Status information via HTTP (Port 80) accessible via browser
 - Dial IP address of the VLM500 via http://
 - VLM500 responds to HTML page

Sensor Page ASTECH			
Туре:	VLM500A V1.06		
S/N:	0500/0010/15		
IP Address:	192.168.0.52		
Subnet Mask:	255.255.255.0		
MAC Address:	00-14-11-84-E7-7B		
Ethernet Software and Firmware:	1.0 / 1.06		
Sensor Page:	V1.1		
Use the comma	n to the Telnet server on port 23. nds from the sensor manual or ation mode by typing a hash (#).		

Figure 13: HTML status page

Configuration

The configuration of the IFFE is done in a separate configuration mode. Interface specific parameters as the IP address to be used or the subnet mask can be used via simple commands here. Furthermore, it is possible to protect the adjusted parameters against unauthorized access by using a password.

Table 19: Technical data of the IFFE

Network type	FastEthernet 10BaseT/100BaseTX
Connections	Circular connector M12, 4 pole, D-coded binder series 715
Protocols	TCP/IP, Telnet, UDP, http
Functions	Auto-MDI/MDI-X, Auto-Negotiation (Full-duplex and Half-duplex)

One IFFE card can be inserted into the slot 3.

Table 20: IFFE

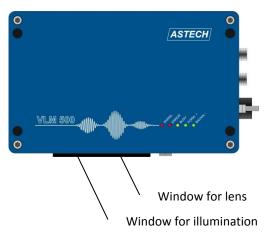
Signal	Connection	
	Slot 7	
T+	37	
R-	36	
T-	35	
R+	34	

Table 21: ILBC

7.12 ILBC – Interface Light Barrier Control

The VLM500 can be connected to the light barrier controller LBC9-CA. Up to nine light barriers (1x start light barrier, 8x stop light barrier) can be connected to the LBC9-CA. Thus, very precise length measurements can be made even for longer distances. Additional information on the light barrier controller is provided in the LBC9-CA documentation.

The LBC9-CA outputs the BCD-coded number of the stop light barrier and a trigger signal. For the further process of this information, an ILBC interface card must be inserted into the VLM500. This provides 5 inputs that process the signals of the LBC9-CA. An ILBC card can be inserted either into slot 4, 5 or 6 in the VLM.


Signal	Connection		
	Slot 4	Slot 5	Slot 6
TRI	31	23	15
LBO	30	22	14
LB1	29	21	13
LB2	28	20	12
LB3	27	19	11
GND	26	18	10

The length measurement principle (in case of single item measurement) with a LBC9-CA is based on a reduced total length measurement. The required length measurement of the VLM can be reduced with the aid of the light barriers and, thus, measurement errors can be reduced. Still, this requires knowledge of the distance between the light barriers (stop light barrier to start light barrier each). These distances are programmed in the VLM with the *LBCDx* command (9.10, Commands for the light barrier controller LBC9-CA) and added to the actual (shortened) length measurement and output at the corresponding interfaces of the length value.

8 Maintenance

8.1 Window

The VLM500 works optically. It is dependent on seeing the measurement object. Thus, it is necessary to check the window in regular intervals and clean it, if necessary. The cleaning should be made with a soft, lint-free cloth and customary glass cleaner.

Figure 14: Windows of the VLM500

Damaged windows must be exchanged. The device must be disassembled from the plant and cleaned for this. The window exchange must take place in a clean environment only. The four hexagon socket screws (wrench opening 2.0 mm) must be unfastened. The window can be lifted from the sealing with a flat screwdriver. The inner side of the window and the lenses must not be touched! The new window must be fastened with four bolts.

Table 22: Specification for replacement window

Device	Replacement window objective	Replacement window light
Measuring device VLM500 /h	OW4	OW3
Stainless steel window as option	OW5	OW5
All other VLM500	OW2	OW2

 \mathbf{N}

Use the correct replacement windows, the original sealing and the original bolts only.

The windows OW 2 and OW 3 are made of special glass with high transmission. The window OW 4 reflects infrared radiation. The windows OW 3 and OW 4 have a higher temperature resistance. The optional window OW 5 is resistant against oil, petrol and kerosene and mechanically more resistant than standard windows OW 2.

Furthermore, special plastic windows are available that, for instance, can be used in food industry fields due to their breakage safety.

If the windows must often be cleaned or wear out fast, possible safety measures must be taken (e.g. blowing device PA2 or cooling and protection housing CB5 with air generation AC5).

All article numbers are deposited in the Annex (see chapter 11.8, Article numbers).

8.2 Illumination

Lamps LED

A special LED with luminous efficiency is used in the VLM500. Still, the brightness decreases with increasing operation time. The average decrease is 70 percent after 50,000 hours at 80 °C chip temperature according to manufacturer statement.

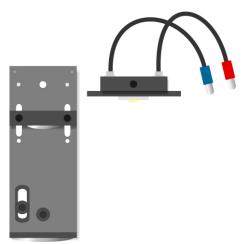
The LED is aligned and fixed on an aluminum block. The block is guided through two register pins and fastened with a hexagon socket screw (3 mm). The electrical contacting is made with two plug connectors. Thus, the exchange can be implemented quickly and easily.

General remarks

The illumination source can be bought at the dealer or directly at the manufacturer. The article number is displayed in the lid of the VLM500 housing, on the light source packaging and in the annex (see chapter 11.8, Article numbers). The information must imperatively be observed when exchanging the light source.

Light sources not yet assembled are very sensitive. We kindly ask you to handle them with extreme care. The lens must not be touched or damaged. Light sources that have not been installed yet are very sensitive!


New light sources must be stored in original manufacturer packaging only. Take the light source out of the packaging just before installation.



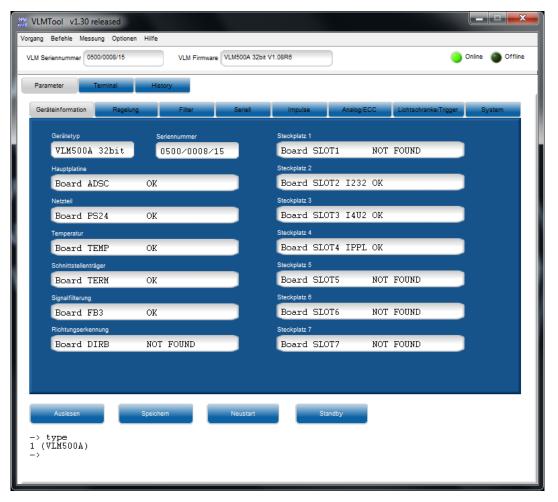
We kindly ask you to consider that no components on circuit boards are damaged when opening the lid. No dirt must get inside the device!

Information on exchanging the LED light source

- 1. The device must be cleaned outside before exchanging the light source. Under particularly adverse circumstances, the device should be taken out of the device to carry out the exchange at a cleaner place.
- 2. After separating the device from the current supply, the four hexagon socket screws must be unfastened and the housing lid of the VLM500 must be removed.
- 3. The two plug connectors and the hexagon socket screw (see arrow) must be unfastened. Afterwards, the old block can be removed.
- 4. The new block must be cautiously inserted, no tilting must occur! The glass of the new light source must not be touched!
- 5. Afterwards, the socket screw must be fastened and the plug connector must be plugged together up to stop, to ensure that the contacts are fully isolated by the protection caps. The cables must not be placed on the optical path of the illumination unit!
- 6. The device must be closed properly and the current supply connection must be reestablished afterwards.

Illumination unit with assembled LED and fastening bolt (arrow)

Illumination unit with disassembled LED


Figure 15: Exchange of the light source

9 Programming

9.1 VLMTool

The optional API (Application Programming Interface) of VLM500 is used for programming. Therefore, said device's interface is connected to a Windows PC serial or USB port through an interface cable. Hereinafter, the first serial interface of the VLM500 is deemed in the manual for the programming. Alternately, the second serial interface can be also be used for this. This is equal with respect to the first interface and has the same range of functions; only the Firmware Update is not possible. Only commands such as *SO10n* must be matched to *SO20n*. An optional interface card with RS-232, USB or Ethernet must be installed in order to use the second interface.

Install the Program VLMTool for Windows (for XP to Windows 7) from the USB stick included in the delivery or from the Internet: <u>http://astech.de/download.html</u>. The Program starts with 9600 bauds, no parity and with XON/XOFF Software Protocol (9600, 8N1, XON/XOFF).

Figure 16: Program VLMTool

If the setting of the serial interface tallies with that of the terminal program, the serial number and the Firmware version will be displayed above the program window.

The connection to the device is made and the programming can begin. The input of commands can take place through the parameter mask or through the terminal function of the VLMTool. More information for handling the VLMTool can be obtained from the corresponding documentation.

9.2 Command Input

There are many characters to enter until the syntax is clear. Characters to be entered for a command are at least printed in bold type in the following command documentation.

The VLM500 does not distinguish between lower- and uppercase characters with the commands. Parameters are separated by spaces. The decimal point is used to separate pre-decimal and decimal places. When entering commands without parameters, the current value of the parameter is displayed. All commands described here are listed again in the Annex (see chapter 11.1). The default setting specified there can already be customized ex factory where applicable.

The data transmission is stopped at the respective serial interface during the attention handling of the commands! This state is signaled by the yellow BUSY LED.

If the changed parameters are not saved with the command Store, they are lost when the device is turned off.

9.3 General Commands

The command Amax

The command is used for setting the parameters for the maximum allowed acceleration with which the VLM velocities can be processed. The value is important for the Tracking Modes 5 and 6.

Syntax: **Ama**x [f] (f = 0.0 ... 10.0 or 0) Unit: m/s²

The command Average

The command is used for setting the averaging time for the velocity and measuring rates calculation. The internal calculation of the length is independent from the set averaging time! In the time set by *Average*, all accruing signals (bursts) are compressed to an average value. The mean value can then be output in the respective interfaces. The command without parameter returns the averaging time

The value should be chosen as large as the process dynamics allows. The usual values are 5 to 50 ms (100 to 250 ms for the VLM500L).

A too long average leads to a delayed reaction on velocity changes. With very strong velocity changes, signal failures can happen in rare cases. If the *Average* is too short, the measured value fluctuates more strongly on the contrary, e.g. vibrations from measurement object or measuring device are visible in the signal curve.

Syntax: Average [f] (f = 0.2 ... 10000 or 0 for external clock) Unit: ms

Furthermore, the parameter *Window* (see page 51, The command *Window*) offers a floating averaging above 2 to 32 values. The floating averaging is switched off with *Window* 1.

Differential Velocity Measurements

If, for example, two or more VLM500s with identical clocks are controlled, it is possible to carry out highprecision and dynamical differential velocity measurements.

Furthermore, *Average 0* allows the synchronization of the averaging processor, and thereby the whole system, by an external signal. Furthermore, a clock of 30 Hz to 500 Hz is fed to the trigger input (TRI1). The parameter *Average* is set to 0 and the value for *Trigger* (see page 49, The command *Trigger*) is also set to 0.

The commands *PO1SYNC 1, SO1SYNC 1* etc. allow the configuration of the externally synchronized output of the velocity values.

The following conditions are to be complied with:

- The parameter setting of the devices is equal. The devices are mounted in equal movement direction and are provided with a high-definition pulse output (expansion cards IP5V or IPPP) or a fast serial output.
- An external synchronization in a serial transmission is absolutely necessary.
- A required direction switching takes place by an external signal (Direction \leq 2).

Programming example with pulse output IP5V for a differential measurement

Average 0	(external synchronization)
Window 8	(8 windows)
Trigger 0	(H active)
Direction 1	(devices mounted contrary to the movement direction)
Minrate 10	(programming monitoring output)
PO10n1	(high definition pulse output 1 switched on)
PO1Factor 10	(factor 10 pulse/mm for pulse output 2)
PO1Output 1	(updating of the pulse output synchronized with the trigger)

The 24 volt clock at the input 'TRI1' allows a maximum synchronization frequency of 500 Hz (2 ms). A clock frequency between 100 to 300 Hz is recommended. The output 'STATUS' is used as monitoring output and controlled by the parameter *Minrate* (see page 45, The command *Minrate*). All other non-required outputs are switched off.

The command *Calfactor*

With this command it is possible to enter a calibration factor manually or display it. The value of the calibration factor is usually close to one. The factory setting is 1.000000. The use of the calibration factor for scaling an output channel is not permitted. Therefore, the respective parameters of the respective interfaces are used.

Syntax: **Cal**factor [f] (n = 0.950000 ... 1.050000)

Calculation of the calibration factor from the length indicated by VLM500 or velocity and the actual values:

NewCalibrationFactor = OldCalibrationFaktor
$$*\frac{ActualValu e}{DisplayedValue}$$

The command Clock

The time of the real-time clock is indicated and set with Clock. The input of the seconds is optional here. Clock without parameter returns the time in format hh:mm:ss.

Syntax: Clock [hh:mm:[ss]]

The command Controlhold

The command allows the freezing of the control loops for adjustment to the brightness of the material surface dependent on the trigger state (see page 49, The command *Trigger*). There are different application fields:

Example of single part measurement

The control loops for the time are locked with *Controlhold 1* in which no part is located in the measuring window (Trigger inactive), that is, the valid values for exposure time and lighting brightness at the end of a part are held until the beginning of the next part. If the individual parts have different colors or surface properties, then *Controlhold* should be switched off.

Syntax: *Controlhold* [n] (n=0-off, 1-on)

The command Date

The date of the real-time clock is displayed and set with *Date. Date* without parameters returns the date in format dd.mm.yy.

Syntax: *Date* [dd.mm.yy]

The command Direction

The source for the direction switching is set with this command. If the movement direction of the measuring object and the direction specified in Direction Plus (+) in the device by an arrow coincide, thus it is defined as forward. *Direction* is not allowed in devices without the optional direction recognition!

Faulty measurements occur in incorrectly adjusted direction. The error can increase with increasing velocity!

Syntax: *Direction* [n]

(n = 0 ... 3, a)

Table 23: Direction setting

n	Meaning
0	Forward
1	Backwards
2	External to 'IN1' -40 to 0,3 mA: Forward
	+5 to +40 mA: Backwards
3	External to 'IN1' -40 to 0,3 mA: Backwards
	+5 to +40 mA: Forward
а	Automatically, double lattice constant (only devices with direction recognition, optional)

The command Error

The last five error codes that occurred are displayed with the command (see Chapter 11.3, Error messages). The code 'EOO No ERROR' means that no errors have occurred. Critical errors are removed from the list after invoking the command. On the contrary, fatal errors at 'E40' are saved because the device must be repaired or the user's intervention is required.

Syntax: Error

The command *Errorlevel*

The command changes the switching performance of the error output 'ERROR'.

Syntax: Errorlevel [n] (0, 1)

- 0 = 'ERROR' active (interconnected) if the device is OK, passive (open) during fatal errors
- 1 = 'ERROR' active during fatal errors, passive if the device is OK

If the VLM500 is switched off, the output 'ERROR' is always passive (open).

The command Fmax

This command returns the maximum allowed measuring frequency of VLM500. The value serves only the information and is calculated from *Vmax* and other parameters.

Syntax: Fmax

The command Help

A help text is displayed through the command in which the commands are listed and briefly commented. The output appears page by page and can be cancelled with 'Escape' (ESC). The output is resumed with any other key.

Syntax: Help or ?

The command *Holdtime*

If a signal failure occurs during a measuring process, a duration can be specified with this command in which the last recorded velocity value is kept on the corresponding interface. If the signal turns out longer than *Holdtime*, then null is returned. A second optional parameter of this command allows giving a reaction time [n2]. In using the reaction time, 'STATUS' turns on already according to *Holdtime* shortened by the reaction time [n2]. This is displayed by the red signal LED. This allows a device connected via 'STATUS' (e.g. SPS) to react before *Holdtime* has actually expired.

 \land

The value of *Holdtime* should normally be chosen greater or equal to *Average*. Common values for *Holdtime* are 50 ms to 1000 ms.

In using the internal length measurement, *Holdtime* must be smaller than the minimum time lag of two individual parts!

The value for *Holdtime* [n1] must be greater than the reaction time [n2].

Syntax: <i>Holdtime</i> [n1] [n2]	(n1 = 10 65535)	Unit:	ms
	(n2 = 9 65534)	Unit:	ms

The command Info

This command displays the device information with software version and serial number such as after switching on the device. The command *Post* must be used (see page 45, The command *Post*) to display further information about the modules found (beginning with Board).

Syntax: Info

The command *Minrate*

The measuring rate monitoring is activated with the command *Minrate* and a parameter greater than 0. *Minrate* without parameter omits the set value.

If the set measuring rate falls below, then the signal LED glows red and the output 'STATUS' is opened.

A pollution control for the window can, for example, be programmed with the command *Minrate*. Useful values for *Minrate* are 5 to 20. The monitoring of the measuring rate occurs every time after the time set by the command *Average*. *Average* should not be chosen too small at low velocities. Attention should be paid that in material standstill or when there is no material in the measuring window, the output 'ERROR' is opened and the signal LED glows red.

In switching on the ECC Control (see page 54, The command *ECCOn*), the measuring rate monitoring is deactivated with *Minrate*.

Syntax: *Minrate* [n] (n = 0 - off, 1 ... 99 - on)

The command *Mode*

The internal signal processing of the VLM500 is switched with this command. Attention should be paid that the velocity range and the technical data change with *Mode 1* (see chapter 3, Device models).

The use of *Mode 1* can be useful in order to match the optical resolution of the device to the surface structure of the measuring object. Thus a higher signal rate can be achieved with rough structures (e.g. rough steel, timber, paper). At higher velocities they are absolutely necessary in part.

Syntax: *Mode* [n] (n = 0 - single grid, 1 - double grid)

The command *Number*

The object counter is used in measuring individual parts for counting parts.

When entering a parameter, the object counter is set to the value n. Without addition, the current count is returned. Switching off the device sets the counter to zero. Every trigger event increases the object counter by one (see Page 48, The command *Trigger*).

Syntax: *Number* [n] (0 ... 65535)

The command Parameter

The command lists the current setting of all parameters. Only the general parameters are displayed with the parameter 'C'.

Syntax: *Parameter* [c]

The command Post

The command Post (power-on-self-test) starts a self-test of the device and shows the found modules. The basic boards are always listed. They are represented as 'Board xxxxx NOT FOUND' in case of an error. Optional equipping, however, is only displayed if an errorless communication with the module could be produced. *Post D* gives out an overview of all hardware options.

```
-> post
Board ADSC OK
Board PS24 OK
Board TEMP OK
Board TERM OK
Board SLOT1 IO5V OK
Board SLOT2 I232 OK
Board SLOT3 IUSB OK
Board SLOT4 IP5V OK
Board SLOT5 IP5V OK
```

Figure 17: Screen text Command Post

Syntax: *Post* [c]

The command REM

All following characters are ignored. REM serves for inserting command lines into parameter files that can be send to the measurement device for programming the VLM500 via the programming interface.

The same effect as REM is achieved by the signs ';' (Semicolon), 'S/N' and '->''. Thus it is possible to return the parameter setting read out with the command *Parameter* to the device.

Syntax: REM [s]

The command Seltrigger

With this command the standby input can be used as a second trigger input.

Syntax: Seltrigger [n] (n = 0 - off, 1 - on)

The command Serialnumber

With this this command, the serial number of the device is displayed.

Syntax: Serialnumber

The command SID

This command displays which serial interface was used for the entry (1 for S1, 2 for S2).

Syntax: SID

The command Signalerror

Error handling is controlled with this command in case of signal failures during an active length measurement or calibration.

If a signal failure occurs during the current length measurement, a critical error is generated when error handling is activated (see chapter 11.3, Error messages).

If there is a signal failure during calibration (see page 72, The command *Calibrate*) parameter 1 returns an error and the velocity or length calibration is interrupted.

Syntax: *Signalerror* [n] (n = 0 - off, 1 - on)

The command Start

The effect of the command *Start* depends on the command *Trigger* (see page 49, The command *Trigger*) which defines if an single part measurement or a continuous measurement takes place. The integration of the length is started with single part measurement beginning at the length value zero. The integration of the length is stopped with continuous measurement and restarted simultaneously.

Syntax: Start

The command Stop

The effect depends on the command *Trigger* (see page 49, The command *Trigger*). The integration of the length is only stopped with the single part measurement.

Syntax: Stop

The command *Temperature*

Two temperatures are displayed in °C from inside the device. As soon as 75 °C is exceeded the Error 'E31 Over temperature detected!' is activated (see chapter 11.3, Error messages).

Syntax: Temperature

The command *Terminal*

The command with parameter returns an overview of the current terminal assignment of the respective SLOT. Without parameter, the terminal assignments of all SLOTs are displayed.

Syntax: *Terminal*

-> terminal						
		_		_		
_		_				
			54	0	BR1	
	53	0			BR1	
			52	0	DIRECI	TION+
	51	0			DIRECI	ION-
•	••					
	7	0			I-OUT	(0-24mA)
			6	0	I-GND	
	5	0			PWR	
			4	0	GND	
	3	0			PWR	
			2	0	GND	
	1	0		_	PWR	
_		_				

Figure 18: Exemplary text of the command Terminal

<u>'!</u>

The command *Tracking*

The command *Tracking* defines the type of adjustment of the signal processing to the current velocity.

Syntax: *Tracking* [n] (n = 0 ... 6, Standard is 2)

Attention should be paid for the correct operation of the measuring device that the direction over the command *Direction* and the maximum plant velocity over the command *Vmax* are set correctly.

The standard is *Tracking 2*. <u>This *Tracking 2* is suitable for almost all measurement tasks</u> and is chosen in case of doubt. For <u>special use</u> please take the setting for Tracking from the Table.

Table 24: Parameter for Tracking

n	Meaning	Typical use
0	Broadband signal processing	Special uses, e.g. measurement with extremely higher acceleration.
1	the velocity at <i>Vmax</i> / 8 takes place, up to this point broadband	<u>Continuous measuring with very high</u> <u>acceleration from zero</u> (measuring device accelerated very fast from zero; only for special machining line)
2	tracks the velocity at zero	Single part measuring or continuous measuring but with normal or slow acceleration from zero Suitable for most measuring tasks (Measuring object runs with velocity greater than zero one or accelerates from zero)
3	tracks the velocity at <i>Vmax</i> / 8, additional search function for bad signals	Continuous measuring for structurally poor, non-metallic surfaces with very high acceleration from zero (only for special machining line for non-metallic surfaces)
4	tracks the velocity at zero, additional search function for bad signals	Continuous processes for structurally poor, non- metallic surfaces with or without start from zero (Measuring object runs with velocity greater than zero one or accelerates slowly from zero; e.g. belt conveyors for plastics and coated materials, rewinder for paper or extruder)
5	 Like Tracking 1. Additionally: tracks a dynamic adjustment of the amount of the minimum period for a valid Burst¹⁾ tracks an increase of the broadband if Holdtime begins to expire²⁾ tracks the use of soft Epsilon values in the lower velocity range³⁾ 	Continuous measurement with extremely high accelerations and delays (measuring device accelerated very fast from zero; only for special machining line)
6	 Like Tracking 2. Additionally: tracks a dynamic adjustment of the amount of the minimum period for a valid Burst ¹⁾ tracks an increase of the broadband if Holdtime begins to expire ²⁾ 	Single part measurement or continuous measurement with extreme accelerations and delays (only for special machining lines)

n	Meaning	Typical use
	- tracks the use of soft Epsilon values in the	
	lower velocity range ³⁾	

¹⁾ this measure is used if the parameter *Permin* (see page 75) is set accordingly

²⁾ this measure is used if the parameter AMAX (see page 41) is set

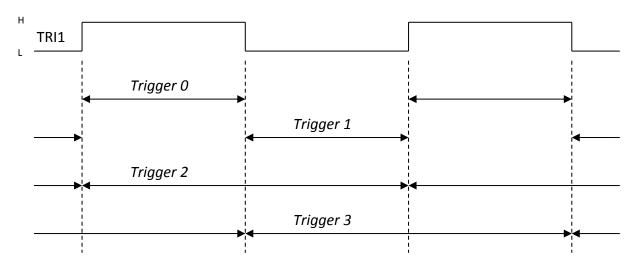
³⁾ this measure is used if the parameter *Epsilon* (see page 73) is set accordingly

The command Trigger

The command *Trigger* is used for specifying the type of trigger signals together with a length measurement. The object counter increases by one (see page 45, The command *Number*) in every trigger event.

Syntax: *Trigger* [n] (n = 0 ... 5)

Table 25: Trigger type


n Trigger event at	Current level on 'IN2'	Use
0 H Level	high: +5 to +40 mA:	single part measuring
1 L Level	low: -40 to +0,3 mA	single part measuring
2 L/H Edge	low/high edge	continuous measuring
3 H/L Edge	high/low edge	continuous measuring
4 AND Function	high: +5 to +40 mA:	single part measuring with 2 light barriers
5 AND Function, inverted	low: -40 to +0,3 mA	single part measuring with 2 light barriers
level		

Single part:

If the signal changes to the active level, the length measuring is started and stopped in the next level change.

Continuous measuring:

It is measured continuously. A trigger edge stops the measuring and triggers the next measuring simultaneously.

Figure 19 : Active length measurement or active trigger signal depending on the command Trigger

The concerned output channel is updated simultaneously with a stop of the length measurement by trigger synchronous (see commands AOSync, PO1Sync, PO2Sync, PO3Sync, SO1Sync and SO2Sync).

Light barrier controller function for individual part measurement with two light barriers:

The integrated light barrier controller function generates a trigger signal by the combination of two light barrier signals (LS) for controlling the length measurement of individual objects. An interference-free function is guaranteed by the logical connection of level and edge detection. The measuring objects must be greater than the light barrier distance and always move from Stop (LS TRI1) to Start (LS TRI2) light barriers. The VLM500 must be placed between both light barriers. The distance of both light barriers to one another is also added to the measured length value (see page 58, The command *SO1Format*).

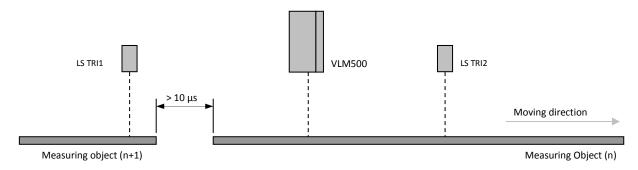


Figure 20 : Single part measurement with VLM500 and two light barriers

Table 26 shows the complete state overview for the trigger setting 4. Should *Trigger* be set to 5, then all levels of this Table have to be inverted.

State	Stop LS (TRI1)*	Start LS (TRI2)*	Prerequisite	Action
1	L	L	-	-
2	$L \to H$	L	-	-
3	Н	L	-	-
4	Н	$L \to H$	State 3	Start of length measurement
5	Н	Н	State 4	Length measurement running
6	$H \rightarrow L$	Н	State 5	Stop of length measurement
7	L	Н	-	-
8	$L \to H$	Н	-	-
9	Н	Н	-	-
10	Н	$H \rightarrow L$	-	-
11	L	$H \rightarrow L$	-	-

Table 26: Logical state diagram of light barrier controller in Trigger 4

L = low: -40 to +0.3 mA

H = high: +5 to +40 mA

The command Vmax

The maximum plant velocity is set with the command *Vmax* in m/s. It is required, for the best possible functioning, that the value for *Vmax corresponds exactly to the actualities of the situation*. It should be set neither too high nor too low since otherwise the automatic adjustments do not work properly.

Syntax: *Vmax* [f] (n = 0.01 ... 100.00 m/s)

 \land

1

Attention should be paid for the correct operation of the measuring device that the direction over the command *Direction* and the maximum plant velocity over the command *Vmax* are set correctly.

This value can also be queried with the command *Fmax* (see page 44, The command *Fmax*).

The measuring device may not be operated above the velocity range mentioned in the data sheet, otherwise the proper function cannot be guaranteed. Please note the parameter *Mode* since it affects immediately the maximum allowed velocity. The parameter *Vmax* is set according to the actual maximum plant velocity. A reserve of approx. 10 % is already considered in the device.

The command *Window*

The parameter Window was implemented for highly dynamic velocity measurements in production process and for feedback control problems. This calculates the weighed moving average according to signal quality over the frequency of the individual burst. A ring memory with 2 to 32 averaging cycles is used (see Figure 21). The duration of a cycle is represented in Figure 21 as a section and corresponds to the averaging time *Average*. The incoming single values are added asynchronously, the outcome is read synchronously once per *Average*. Thereby, a high refresh rate of up to 32 times can be achieved to the outputs against the normal average.

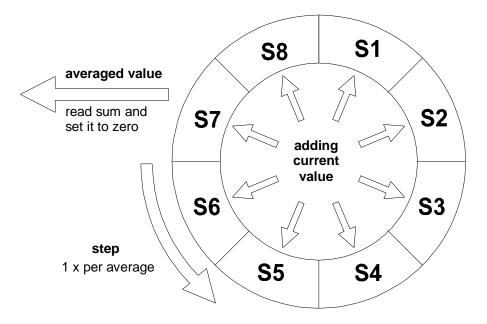


Figure 21: Simplified operating principle of the averaging processor with 8 cycles²

The averaging time (see page 41, The command *Average*) is chosen as high as the desired updating time for the fastest used output channel.

The sliding averaging can be switched off with the command Window 1.

Syntax: *Window* [n] (n = 1 ... 32)

² Window 8, that is 8 sliding windows (sum S1 to S8) ASTECH GmbH

9.4 Analog output

An analog current value can be output with an analog output (optional extension card IAUN). A digital/analog converter is used. The range for the output of the measured values is set with the commands *AOMin* and *AOMax*. *ANMin* sets the value with which the minimum current value is output. *AOMax* applies accordingly to the maximum value.

Example: The following value pairs result from *AOMin* = 0 and *AOMax* = 100:

Current value	AOValue V Velocity	AOValue R Measuring rate	<i>AOValue Q</i> Signal quality in movement	AOValue Q Signal quality during standstill
4 mA	0 m/s	0	Measuring rate = 0	little reflection
12 mA	50 m/s	50	Measuring rate = 50	medium reflection
20 mA	100 m/s	100	Measuring rate = 100	a lot of reflection

The lowest current value is output if the actual measuring value is lower than *AOMin* and the highest current value is output if it is greater than *AOMax*. The output value is parameterizable (see page 53, The command *AOValue*). The output is updated either after achieving *Average* or after a Trigger event (see page 53, The command *AOSync*).

The command AO

This command shows all parameters of the analog output.

Syntax: AO

Example for analog output

The output 4 to 20 mA in a velocity range of -3 to +3 m/s with different values for AOMIN and AOMAX is represented in the following diagram. The velocity at the analog output is given out (AOValue V).

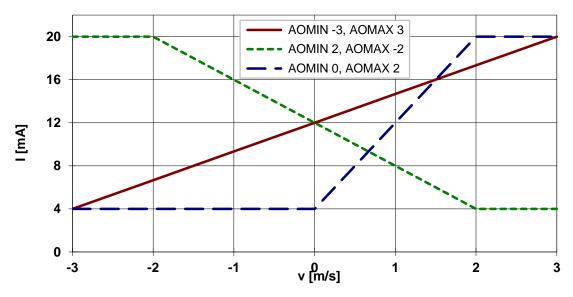


Figure 22: Examples for analog output

Currents lower or higher than the range determined by the hardware (e.g. 4 to 20 mA) are not possible. If e.g. the output value exceeds *AOMAX*, the maximum current value is put out.

The command AOMax

The maximum value for analog outputs is determined with this command.

Syntax: AOMax [f]

(n = -1000.0 ... 1000.0)

Depending on the adjusted direction (*Direction*) it may be necessary to adjust the value for *AOMAX* for a negative value, if the device is assembled backwards to the direction of movement. Use the command *Test* to check the sign.

The command AOMin

With this command, the minimum value for analog output can be set.

Syntax: *AOMin* [f] (n = -1000.0 ... 1000.0)

The command AOOn

With this command, the analog output is switched in or off.

The command *AOSync*

With this command is specified if the output value is updated synchronously with the indicated time interval *Average* (see page 41, The command *Average*), during a trigger event (see page 49, The command *Trigger*) or during every burst.

Syntax: AC	DS vnc[n]	(n = 0 - average1)	1 - trigger	2 - burstsynchron)

The command *AOValue*

With this command is determined if the Velocity, the measuring rate or the signal quality shall be output.

Syntax: *AOValue* [c] (c = 'V', 'R', 'Q')

If option *AOValue Q* is set, the measuring rate (like at *AOValue R*) is output during the measurement and in case of signal failure or standstill of the measuring object the product (Quality) out of light brightness and exposure time (Exposure) at the analog output (see page 67, The command *TestQuality*). This function can be used as alignment aid for pipe and wire applications.

9.5 ECC Control

The ECC Control allows monitoring measurement rate and velocity by hysteresis. The ECC control is an extension of the measuring rate monitoring (see page 45, The command *Minrate*). It is needed when using the extension card IECC.

The card IECC allows connecting an external rotary encoder or a second velocity measuring device VLM500. If a selectable velocity or measuring rate is undercut, the pulse output is switched to rotary encoder or the second measuring device. The switching back takes place as soon as velocity and measuring rate are higher than two other adjustable values again.

The checking of velocity and measuring rate is implemented after the averaging time was reached (see page 41, The command *Average*). The switching is done via the status signal 'ERROR'. When *Holdtime* has expired, the status signal is switched off immediately. When using the ECC control, *Average* should be set to 10 ms to ensure a fast switching (*Average 5, Windows 4* or similar are also useful).

The command ECC

This command displays of all parameters of the ECC control.

Syntax: ECC

The command ECCOn

With this command, the ECC control is switched in or off. The measuring rate monitoring (see page 45, The command *Minrate*) is automatically deactivated when the ECC control is activated.

Syntax: *ECCOn* [n] (n = 0 - off, 1 - on)

The command ECCR1

With this command, the minimum measuring rate for switching to an external device is determined. Usual value are 3 to 10. The value must be lower than *ECCR2*.

Syntax: *ECCR1* [n] (n = 0 ... 99)

The command ECCR2

With this command, the measuring rate for switching back is determined. Usual values are 8 to 20. The value must exceed *ECCR1*.

Syntax: *ECCR2* [n] (n = 0 ... 99)

The command ECCV1

With this command, the minimum velocity amount for switching to the external device is determined. Usual values are 0.05 to 0.2 m/s. The value must be lower than *ECCV2*.

Syntax: *ECCV1* [f] (n = 0.0001 ... 99.9999) Unit: m/s

The command *ECCV2*

With this command, the velocity (amount) for switching back again is determined. Usual values are 0.1 to 0.3 m/s. The value must exceed *ECCV1*.

Syntax: ECCV2 [f]

(n = 0.0001 ... 99.9999) Unit: m/s

9.6 Pulse output via first pulse output

During the pulse output, two clock sequences A and B (maximum deviation of the phase \pm 10°) displaced for 90° with a duty cycle of 1:1 at the outputs OUT1 and OUT2 are provided. The phase shift can be controlled by the direction input 'DIR' or the optional internal direction recognition of +90° to -90°.

The output is updated either after reaching *Average* or after a trigger event (see page 57, The command *PO1Sync*).

The command PO1

Display of all pulse output parameters.

Syntax: PINC1

The command *PO1ECC*

With this command, the switching of the ECC control of the first pulse output is switched in or off.

Syntax: **PO1E**CC [n] (n = 0 - off, 1- on)

The command *PO1Factor*

With this command, a scaling factor can be adjusted. At factor 1, 100 Hz are output if the velocity amounts to 0.1 m/s or the measuring rate amounts to 100 (see page 57, The command *PO1Value*). For the velocity, the value, thus, corresponds to pulse **per millimeter**.

Syntax: **PO1F**actor [f] (n = -2500.0 ... 2500.0, <> 0)

The minimum possible output frequency for the pulse output amounts to 0.2 Hz. If the output value is lower, no pulses are output! The maximum possible output frequency depends on the installed interface boards and their output wiring (limit frequency).

The command *PO1Hold*

The command allows freezing the first pulse output depending on the inputs DIRECTION or TRIGGER 1, irrespective of a current measurement or a signal dropout. Furthermore, a hold time between 1.0 s and 25.5 s can be adjusted in a pattern of 100 ms. This allows holding the last valid measuring value at the first pulse output in case of signal dropout over a hold time in addition to *Holdtime* (see page 44, The command *Holdtime*). Still, the output, different from the control via the inputs DIR or TRI1, must be updated as soon as new measuring values are available.

Syntax: *PO1Hold* [n] (n = 0 ... 4, 10 ... 255)

Table 28: Meaning of the parameter of PO1Hold

n	Holding pulse output	Current level
0	Off	-
1	at H level to DIR	high: +5 to +40 mA
2	at H level to DIR	low: -40 to +0.3 mA
3	at H level to TRI 1	high: +5 to +40 mA
4	at L level to TRI 1	low: -40 to +0.3 mA
10255	for 1.0 s 25.5 s in 100 ms steps	-

The command PO10n

1

With this command, the pulse output is switched on or off.

Syntax: **PO1On** [n] (n = 0 - off 1 - on)

For minimizing the processor load, unused output channels must be principally switched off!

The command *PO1Output*

With this command, the output type of the second phase of the first pulse output is determined.

Syntax: *PO1Output* [n] (n = 0 - A+B, 1 - A+DIRECTION)

The command *PO1Sync*

With this command is determined if the output value is updated synchronously with the given time interval *Average* (see page 41, The command *Average*), during a trigger event (see page 49, The command *Trigger*) or during every burst.

Syntax: **PO1S**ync [n] (n = 0 - average-, 1 - trigger-, 2 - burst synchronous)

The command *PO1Value*

With this command is determined if the velocity, the measuring rate or the signal quality are output.

Syntax: *POC1Value* [c] (c = 'V', 'R', 'Q')

If option *PO1Value Q* is set, the measuring rate (like at *PO1Value R*) is output during the measurement and in case of signal failure or standstill of the measuring object the product (Quality) out of light brightness and exposure time (Exposure) at the pulse output (see page 67, The command *TestQuality*). This function can be used as alignment aid for pipe and wire applications.

9.7 Pulse output via the second and third pulse output

An additional pulse output each with 2 phases each (A, B) is provided with the optional interface cards (IPPL, IP5V, IPPP). They correspond with the first pulse output regarding resolution and minimum output frequency. The parameter setting also corresponds to those of the pulse output mentioned in chapter 9.6. 'PO1' must be replaced by 'PO2' for OUT 3/4 or 'PO3' for OUT 5/6 here.

9.8 Output via the first serial interface

The command SO1

Displays all parameters at the serial interface 1.

Syntax: SO1

The command *SO1Address*

It is possible to switch the addressability for the serial interface on or off with this command. As soon as an address is set, the VLM500 is only manageable over it. This enables to connect several measuring devices to a serial bus (e.g. RS-422 or RS-485).

Syntax: **SO1A**ddress [n] (n = 0 - off, 10 ... 99 - on)

With addressability enabled, the VLM500 can only be addressed with the following syntax '*##command parameter*'. *##* stands for the address. The VLM500 confirms a processed command with the characters ACK (06H).

The following input string results for querying the maximum velocity with address 15:

:15vmax

In order to deactivate the addressability the following string needs to be sent to the VLM: :15so1a 0.

The command SO1Format

In addition of the programming, data output can also take place via the first serial interface. The transmission format can be given within wide limits. The output ensues in ASCII. The individual parameters can be separated by spaces, commas or periods. However, the separators between the parameters can also be omitted.

Syntax: **SO1F**ormat [s] (s - parameter string, max. 42 characters)

Table 29: Parameter for formatting the output

Parameter	Meaning
''	Inserts the string enclosed in quotation marks
09	Numbers (0 to 255) that are not enclosed in quotation marks are interpreted as ASCII Code
	and output as the corresponding ASCII character
В	Inserts the value periods/16 since the last trigger event
С	Inserts the current time (e.g. 12:50:28)
D	Inserts the current date (e.g. 31.12.2010)
E	Inserts the exposure (0 to 14)
F	Inserts the measuring frequency in Hz
Н	Inserts the temperature of the first temperature sensor in °C
1	Inserts the lamp intensity (0 to 30)
J	STANDBY, TRIGGER 1 and DIR as number in BCD coding (STDBY=2 ² , TRIG1=2 ¹ , DIR=2 ⁰)
L	Inserts the length in m
N	Inserts the status of the object counter (0 to 65535)
Р	Inserts the number of periods since the last trigger event
Q	Inserts the product (0 to 100) from lamp intensity and exposure time
	(see page 67, The command <i>TestQuality</i>)

Parameter	Meaning
R	Inserts the measuring rate (0 to 100)
S ³	Inserts several fixed hexadecimal values in succession:
	Velocity in m/s * 100000 (24 bits = sign + 6 nibbles)
	<space></space>
	Measuring rate * 10 (12 bits = 3 nibbles)
Т	Disables the standard identifier CR LF of the output string
V	Inserts the velocity in m/s
Х	Inserts the last error number (see page 43, The command Error)
Z	Same as S with 2 additional nibbles for last error numbers

The hexadecimal output is preferred if values faster than 20 ms should be given in time grid (see page 61, The command *SO1Time*) since the conversion requires considerably less computing time in hexadecimals. The format S or Z is always used in a time grid < 10 ms.

Table 30: Format specifications of the individual parameters of the output to S1

Format	Meaning
a+x	Adds the value a (V, L, F,) with the offset x
a*x	Multiplies the value a (V, L, F,) with x
a:H[:n]	Returns the value a (V, L, F,) as hexadecimal number with n characters 4
a:n[:m]	Returns the value a (V, L, F,) as formatted number with n places and m decimal places

All format specifications from Table 30 can be arbitrarily combined with one another and can only be used on numerical parameters (excluded e.g. special string S and Z, date, time, ...). The multiplication and division calculation applies over the addition and subtraction calculation.

Without format specification the output is left-aligned and the leading zeros are suppressed except in hexadecimal output. They are filled with spaces in format specifications. Should the value exceed the possible number of digits by format specifications, the output is expanded to the required number of digits. The decimal point and possibly an existing sign (only with negative numbers) also occupy a place.

If numbers are used in format string that are not enclosed in quotation marks then they are interpreted as ASCII Code and output as corresponding ASCII characters. Here every ASCII Code must be separated by a space, comma or period.

Example:

SO1Format 72 97 108 108 111for string 'Hello' and CR LFSO1Format v 13 10for velocity and twice CR LF

The standard identifier of the output string is CR LF (13 10 or 0DH 0AH). It can be disabled with the parameter T and it is possible to define the identifier at the end of the format string. The position of the parameter T for disabling the identifier is not relevant. A self-defined identifier must always be at the end of the format string.

³ The special format S carries out a fast output of the velocity and measuring rate.

⁴ The hexadecimal output in the format a:H:n takes place with signs (minus signs or spaces) and n decimal places. Every byte requires 2 decimal places. Without the parameter n, 9 characters for 4 bytes and the sign are returned (32 bit number). Leading zeros are not suppressed.

Examples:

SO1Format v ' m/s'	Velocity and string m/s, CR LF
SO1Format v,' ',r	Velocity, SPACE, measuring rate, CR LF
SO1Format v 20 r	Velocity, SPACE, measuring rate, CR LF
SO1Format v*60,' m/min',I,' m'	Velocity, m/min, length, m, CR LF
SO1Format I*0.1+12.345	Length in dm + offset (specified in dm)
SO1Format s t l:h 10	For special format s, long hexadecimal and LF
SO1Format '#rat'r t42	for string '#rat', measuring rate and characters '*'

The command SO1Interface

The serial interface is configured with the command *SO1Interface*. There is the setting of baud rate, protocol type, parity and directionality. The setting can take place individually for each parameter or simultaneously for all parameters. The order of the parameters does not matter. Unspecified parameters are not changed. The format is set with eight data bits and a stop bit. With parity enabled, the eight data bit is replaced by the parity bit. A parity error is indicated for example by 'E11 SO1 input error (parity)' and a buffer overflow by 'E11 SO1 input error (overflow)' (see chapter 11.3, Error messages).

Syntax: **SO1I**nterface [n] [c] [c] [c] (n = baud rate, c = protocol, parity, ...)

The following values are possible for the baud rate:

n: 9600; 19200; 38400; 57600; 115200

Table 31: Setting of the RS-232 Interface

С	Description
	Protocol type
'-'	No protocol
'X'	Software protocol (XON / XOFF Codes)
	Parity
'N'	No parity
'0'	Odd parity
'E'	Even parity
	Directionality
'D'	Duplex (RS-232, RS-485)
'H'	Half-duplex (RS-485, RS-422)

According to the attached interface type (I4U2 or I4U4) the VLM500 sets the directionality to half or full duplex automatically. Furthermore when an I232 or IUSB is attached the device sets to full duplex automatically.

The command *SO1On*

The data output on the serial interface is switched on or off with this command. Data output is interrupted during the command input and processing!

Syntax: **SO1On** [n] (n = 0 - off, 1 - on)

The command *SO1Sync*

With this command it is defined whether the output value is sent synchronously to a selectable time interval (see page 61, The command *SO1Time*), by a trigger event (see page 49, The command *Trigger*) or by every burst.

Syntax: **SO1Ou**tput [n] (n = 0 - average-, 1 - trigger-, 2 - burst synchronous)

The command *SO1Time*

The time interval in ms is defined with this command in which the data is output to the interface S1.

All accumulated values (bursts) are averaged with the velocity measurement during the averaging time (see page 41, The command *Average*) The data is then output equivalently with the time set by *SO1Time*.

Syntax: *SO1Time* [n] (n = 1 ... 65535) Unit: ms

9.9 Output via the serial interface 2

Programming or data output can take place over the serial interface 2 (optional expansion cards IUSB, I232, I4U4, I4U2) as over the serial interface 1. All commands apply accordingly, only that 'SO1' is replaced by 'SO2'.

9.10 Commands for the light barrier controller LBC9-CA

The following commands are only valid using the light barrier controller LBC9-CA. You can find further information for this accessory at <u>www.astech.de</u>.

The command LBC

Displays all parameters of the LBC control.

-> lbc	
LBCD1	1.2345
LBCD2	2.3456
LBCD3	3.4567
LBCD4	4.5678
LBCD5	5.6789
LBCD6	6.7890
LBCD7	7.8901
LBCD8	8.9012
LBCON	0

Figure 23: Screen text of the command *LBC*

Syntax: LBC

The command LBCD1

The command LBCD1 sets the distance of the first STOP light barrier to START light barrier in meters.

Syntax: *LBCD1* [n] (n = 0 ... 999.9999) Unit: m

The commands *LBCD2* to *LBCD8*

The commands LBCD2, LBCD3, LBCD4, LBCD5, LBCD6, LBCD7 and LBCD8 set the respective distances of the second, third, fourth, fifth, sixth, seventh and eighth STOP light barrier to START light barrier in meters.

Syntax: *LBCD[x]* [n] (x = number of the STOP light barrier, n = 0 ... 999.9999) Unit: m

The command LBCOn

The command *LBCON* switches on or off the offset detection of an external LBCPP. If the offset detection is switched on, then the active STOP light barrier is registered by a trigger and by the inserted ILBC Board and the corresponding offset is added up to the output value of the serial output.

Syntax: *LBCOn* [n] (n = 0 - off, 1 - on)

9.11 Offline Measurement

The command OFF

Displays all parameters for the Offline Measurement.

Syntax: **POF**F

The command OFFLine

The measuring values are not sent (as previously described) to an interface in the operating mode *OFFLine* but are written in the internal storage. The operating mode is used for creating velocity and time curves and for recording very fast processes.

No actualization of the output channels takes place during the offline measurement, that is, pulse, analog and serial outputs are not possible!

The Offline measurement is started with the command *OFFLine*. The optional parameter T causes that a trigger event is maintained (see page 49, The command *Trigger*). The maximum amount of records depends on the set data format (see page 64, The command *OFFValue*). The BUSY-LED (yellow) glows during the measurement. The measured data are overwritten only by a renewed Start. They are lost by power failure. A premature cancellation is possible with ESC. An error message is displayed by cancellation with ESC or by full storage (refer chapter 11.3, Error messages).

Syntax: **OFFL**ine [c] (c = 'T' - Wait for Trigger)

The command OFFFactor

A scaling factor can be set with this command. E.g. a velocity measurement (*OFFValue V*) of the value 60 can be used for output in m/min. The scaling factor is considered first by the output with *OFFRead*, only the raw values without factor are stored!

Syntax: **OFFF**actor [f] (n = -2500.0 ... 2500.0, <> 0)

The command OFFMeasure

The duration of the offline measurement is set in seconds with this command.

Syntax: *OFFM*easure [n] (n = 1 ... 65535) Unit: s

The command OFFSync

With this command is set if a measured value is stored synchronously to a selectable time interval (see page 64, The command *OFFTime*), by a trigger event (see page 49, The command *Trigger*) or by every burst.

Syntax: **OFFO**utput [n] (n = 0 - average-, 1 - trigger-, 2 - burst synchronously)

The command OFFRead

The measured data are sent to the serial Interface 1 with this command after an offline measurement. The format is secure in reading; the time is issued in ms from the beginning of the measurement and the value or the values with maximum resolution. The numbers are separated by a semicolon. A line break (CR LF) follows

after the value. If no measurement has yet started, an error message is displayed by an attempt to read (chapter 11.3, Error messages).

Syntax: **OFFR**ead

In case of a premature abort with ESC, an error message is displayed (chapter 11.3, Error messages).

The command *OFFTime*

The time interval is set with this command during which the data is saved (see page 63, The command *OFFSync*).

Syntax: *OFFTime* [n] (n = 2 ... 65535) Unit: ms

The command *OFFValue*

With this command is set whether the measuring frequency, length, object counter, measuring rate or velocity.

Syntax: **OFFV**alue [c] (c = 'F', 'L', 'N', 'R', 'S', 'V')

Table 32: Meaning of the parameter of OFFValue

с	Description	max. record count
'S'	Velocity and measuring rate	29126
'V'	Velocity	32767
'L'	Length	32767
'R'	Measuring rate	52427
'F'	Frequency	32767
'N'	Object counter	32767

9.12 Test Commands

When using the VLMTool the test commands are shown as separate windows with indicators and gauges representing the test results.

The command *TestAO*

A row of values is displayed that gives information about the function of the analog output. The following values are constantly displayed: velocity, measuring rate, output current in percentage and load (LOAD). If no load (500 Ohm maximum) is connected or no interface card with analog output is installed, then the value for LOAD is 0.

The refresh of the display is every 250 ms. The data output is interrupted during the test commands!

The abort takes place with ESC; otherwise the command is finished automatically after 60 seconds. The automatic cancellation can be stopped by indicating the parameter C.

```
-> TESTAO
AOON
              1
              0.000
AOMIN
              100.000
AOMAX
AOOUTPUT
              0
AOVALUE
              V
  V(m/s) Rate IOUT(%) LOAD
   0.105
            99
                   0.10
                            Ω
->
```

Figure 24: Screen text of command TestAO

Syntax: *TestAO* [c] (c = 'C')

The command *TestFilter*

A row of parameters and values is displayed that have effects on the filter board or give information about their function. The following values are displayed: frequency, velocity, measuring rate, center frequency of the filter board, broadband, conditions: bandpass/upper low pass/upper low pass and anti-alias field.

The refresh of the display is every 250 ms. The data output is stored during the test command!

The abort takes place with ESC; otherwise the command is finished automatically after 60 seconds. The automatic cancellation can be stopped by indicating the parameter C.

```
-> TESTFILTER
Tracking 2
Exposure
          5
               auto
          0
Expmin
               auto
Expmax
          5
               auto
          8
Permin
               auto
          2
Amp
               auto
         20 % auto
Bwmin
Epsilon
          5.0 %
Filter type FB2
Vmax
         10.00 m/s
                      600.0 m/min
         45.59 kHz
Fmax
    F(Hz) V(m/s) RATE
                          FB(Hz)
                                    BW BP LPL LPH
                                                     R
   6033.3
            1.415 100
                                                     0
                          6000.0 57.7 1
                                            0
                                                 0
```

->

Figure 25: Screen text of command TestFilter

Syntax: *TestFilter* [c] (c = 'C')

The command TestIO

A row of values is displayed that give information about the function of the system. The following values are displayed: velocity, length, measuring rate, the outputs TRI1, TRI2, DIR, STBY and also the outputs ERR and STAT.

The refresh of the display is every 250 ms. The data output is interrupted during the test command!

The abort takes place with ESC; otherwise the command is finished automatically after 60 seconds. The automatic abort can be stopped by indicating the parameter C.

```
-> TESTIO

V(m/s) L(m) RATE TRI1 TRI2 DIR STBY ERR STAT

-99.999 -99999.999 99 0 0 0 0 1

->
```

Figure 26: Screen text command TestIO

Syntax: *TestIO* [c] (c = 'C')

The command TestMeasure

A row of values is displayed that give information about the function of the system. The following values are permanently displayed: frequency, velocity, length, measuring rate, number of periods, exposure time, lamp intensity, overexposure, underexposure and FIFO fill level.

The refresh of the display is every 250 ms. The data output is locked during the test command!

The abort takes place with ESC; otherwise the command is finished automatically after 60 seconds. The automatic cancellation can be stopped by indicating the parameter C.

```
-> TESTMEASURE

F(Hz) V(m/s) L (m) Rate Periods EX IL O U FIFO

6033.3 1.415 3.999 100 16956 5 30 0 1 1

->
```

Figure 27: Screen text of command TestMeasure

Syntax:	Testm easure [c]	(c = 'C')
---------	-------------------------	-----------

The command *TestPS*

A row of values is displayed that give information about the function of the power supply and illumination (LED). The following values are constantly displayed: LED brightness, LED current, LED voltage, 12 V and -12 V supply voltage. If a fatal error occurs (see chapter 11.3, Error messages), then this display will no longer be updated and only the last measured values will be sent. If no valid power supply is installed or was recognized, then the error 'E21 Not supported by power supply' is displayed instead of the values.

The refresh of the display is every 250 ms. The data output is interrupted during the test command!

The abort takes place with ESC; otherwise the command is finished automatically after 60 seconds. The automatic cancellation can be stopped by indicating the parameter C.

-> TESTPS 5PA 5NA 12NA 5PD 1.2PD LEDU LEDI ILLU 12PA 11.94V 4.95V -4.93V -11.98V 4.90V 1.21V 3.31V 0.71A 30 ->

Figure 28: Screen text of command TestPS

Syntax: *Testps* [c] (c = 'C')

The command *TestQuality*

A bar chart is displayed that gives information about the measuring rate of the signals (see chapter 9.15, Read commands) during the measurement. In standstill, on the other hand, a product (Quality) from lamp brightness and exposure time is displayed instead of the measuring rate. This product can therefore be used, for example, in order to exactly align the VLM500 to a tube or wire. It should be considered here, however, that the length of the bar is the maximum in the movement (measuring rate) and reaches its maximum value (Reflection) in standstill 2/3. This guarantees that a sufficient amount of light is reflected back to the VLM320 from the measuring object.

A similar function supplies the analog output with quality output (see page 53, The command AOValue).

The refresh of the display is every 250 ms. The data output is interrupted during the test commands.

The abort takes place with ESC, otherwise the command is finished automatically after 60 seconds. The automatic cancellation can be stopped by indicating the parameter C.

Figure 29: Screen text of command TestQuality

```
Syntax: TestQuality [c] (c = 'C')
```

The command TestTComp

Important data of the temperature compensation is displayed constantly.

The refresh of the display is every 250 ms. The data output is locked during the test command!

The abort takes place with ESC; otherwise the command is finished automatically after 60 seconds. The automatic cancellation can be stopped by indicating the parameter C.

TESTTCOMP TCOMP * TDIF = COMP 0 PPM/K * -5 K = 0.00 PPM

Figure 30: Screen text of command TestTComp

Syntax: *TestTComp* [c] (c = 'C')

9.13 Service commands

These commands should only be used with detailed knowledge of the VLM500 since they have direct effects to the measuring procedure and the parametrization.

The command *ListError*

The VLM500 provides a set of error messages which can be found in chapter 11.3. Certain critical and fatal errors are stored permanently in an error list. They are stored with time and date when they appeared. With the system command ListError the error list can be read out. It cannot be deleted. The list provides 124 entries. When it is exceeded, the oldest entry will be overwritten.

Syntax: Listerror

The command Password

The system command *Store* is protected by a password that can be changed with the command *Password*. The password consists of up to eight characters including letters, digits, special and blank characters that are represented by stars during input. Upper and lower case letters are not distinguished. The password protection can be switched off in which no characters are entered upon requesting the new password and is confirmed with 'Enter'. A cancellation of the input can be made with 'ESC'. The label 'Illegal use!' appears with three incorrect inputs of the password. Afterwards, a period of 60 seconds must be waited before the next command is accepted. The password **'WEGA'** is preset.

Syntax: Password

The command *Restart*

A restart of the device is triggered with this command. The parameter is thereby reset with the *Store* command to the last saved values.

Syntax: Restart

The command Restore

This command loads the specified parameter set from the stated storage place to the main memory of the VLM. Thereby, the current unsaved changes are lost. When the device is restarted (via command "restart" or by interrupting the power supply) this command is executed automatically. The parameter set which is loaded during restart depends on:

- the parameter set which was loaded the last time when calling the command restore or
- the last stored parameter set when calling store (see page 69, The command Store).

When the command is executed without specifying a storage place, the parameter set from storage place 0 is loaded.

Calling "restore f" loads the factory default settings. To work with this parameter set, it needs to be stored in a storage place. The factory default settings cannot be overwritten by the user.

Syntax: <i>Restore</i> [n] [s]	(n = 0, 1, 2, 3, 4 – Definition of the parameter set to be loaded)
	(s = f – loading of factory default settings)

The command Simulation

The command is used for simulating velocity and measuring rate at the outputs of the measuring device. It interrupts the actual measurement! The device behaves outwardly as it was set over the parameters of the individual interfaces. Likewise it reacts from trigger signals applied externally and calculates a length on the basis of the set velocity. The parameter for the velocity must be specified. However, the second parameter for the measuring rate is optional.

The abortion of the simulation is made with ESC.

Syntax: *Simulation* f [n] (f = -100.0 ... 100.0; Velocity in m/s) (n = 0 ... 100; Measuring rate)

The command *Standby*

The command is used in order to set the device in Standby mode. The measuring function is set and the light source is switched off.

The cancellation of the Standby Mode takes place with ESC.

Syntax: Standby

The command Store

The command saves the actual parameters in the device permanently. This parameter set is retained after a power off or a restart of the device. Up to five parameter sets can be stored in the VLM. The last saved parameter set is reloaded after powering on the device. The command is protected with a password (see page 68, The command *Password*). When the device is restarted a parameter set is loaded automatically. The decision which set out of the five sets is loaded depends on:

- the parameter set which was loaded the last time when calling the command restore (see page 68, The command *Restore*) or
- the last stored parameter set when calling this command.

When the command is executed without specifying a storage place, the parameter set from storage place 0 is loaded.

Syntax: *Store*[n] (n = 0, 1, 2, 3, 4 – Definition of storage place)

The command Update

The command changes a parameter in the boot loader without specification. An update of the Firmware of the device can take place in the boot loader. The boot loader indicates the required steps. The command must be written out.

\land	The boot loader supports only the serial interface S1 for the update!

A special, device specific file is required (update file, extension *.hex) that can only be created by the manufacturer from the device serial number.

Syntax: Update [n]	(n = 0 – Update of ADSC, 1 – Update SLOT4, 2 – Update SLOT5, 3 – Update SLOT	
Update [s]	(s = f – Update of the execution-script of a fieldbus module)	

We strongly recommend the use of the program VLMTOOL for installing a Firmware. An update can be carried out quickly and safely with the command 'Action | Update Firmware'. Only the selection of the update file is required.

The commands *Update* and *Exit* are used in addition of the commands for changing the baud rate in the boot loader. The command *Update* starts the update of the VLM500 firmware. After calling the command the user is prompted to transfer the new firmware. Therefore, a special firmware file is required that can be obtained from the dealer or manufacturer. The content of this file must be transferred as ASCII character by character (e.g. in VLMTool). Thereby, it should be noted that no impermissible characters are transferred, by keyboard input, for example; since this can lead to error output and cancellation of the routine. As soon as the transfer of the file is finished, the device starts the update automatically for the new Firmware. The VLM500 may in no case be shut down or interrupted during this process. If everything is passed through without errors the device can be restarted with the command *Exit*. The new version number of the Firmware must then appear in the subsequent info output.

An update of the respective serial flash of the FPGA takes place by indicating a parameter on the main motherboard or on the auxiliary board. The content of this file must be transferred as ASCII character by character (e.g. in VLMTool). The VLM500 may not be switched off during the update. The VLM500 restarts automatically after the completion of the process.

If the update fails and thereby the Firmware is damaged, the device will not start anymore. In this case, contact the manufacturer.

An update of the fieldbus module behaves different than a flash update described before. After executing the command "update f" all functions of the VLM500 are interrupted and a direct serial communication channel from the fieldbus module to the connected host PC is established. The VLMTool must be closed to free the serial port of the host PC. After that the update program "Wingate" provided by Deutschmann Automation GmbH & Co. KG, needs to be started in order to update the script. Wingate can be downloaded from the website of the manufacturer (<u>http://www.deutschmann.de/en/support/?kat=4&pkat=3</u>). For more information about the usage of Wingate refer to the relevant documentation. After the update of the fieldbus module the VLM must be restarted.

<u>'</u>]

9.14 System Commands

Changes of the parameters listed here should only be made on instruction by trained service staff members or the manufacturer. The default settings ex factory are adjusted to the device and the field of operation and should not be change in normal case!

The command Amplifier

With this command, the maximum amplification of the measuring signal can be set. For *Amplifier a*, an automatic control depending on the signal strength takes place.

Syntax: Amplifier [n] (n = 0 ... 3 - fixed, a - automatic)

Table 33: Meaning of the parameters of Amplifier

Ν	Amplification
0	1x
1	12x
2	14x
3	18x
А	Automatic

The parameter should be left to the setting automatic. Failures or error messages can happen with the incorrect setting of the parameter.

The command Bw

This command determines the filter bandwidth of FB2 and, thus, the possible signal tracking (acceleration) of the VLM500. Still, the parameter *Tracking* (see page 48, The command *Tracking*) is mainly decisive and should be prior used. The bandwidth is indicated in percent related to the current measuring frequency. The value 0 sets the bandwidth to automatic.

To enable higher acceleration than specified in the technical data, an adaptation can be carried out by trained service.

Syntax: *Bw* [n] (n = 10 ... 75 - fixed, a - automatic)

Table 34: Meaning of the parameters of Bw

n	Bandwidth		Installed filter board	Direction
0	Automatic	20%	FB2 (VLM500 A/D/L)	03
		25%	FB2 (VLM500 A/D/L)	48
		25%	FB2V (VLM500 V)	-
10	10%		-	-
50	50%		-	-

The parameter should be left to the setting automatic. Failures or error messages can happen with the incorrect setting of the parameter.

The command *Calibrate*

A calibration of the velocity or length is carried out with this command. Only figures are used, that is, negative velocity or length values are converted to positive. The progress of the measurement is displayed in percentage during the calibration; the BUSY display (yellow) glows. A cancellation can be made with ESC. The new calibration factor is displayed after completion of the measurement. The value must be saved with *Store* like all other changes of the parameter!

The calibration factor is calculated according to the following formula:

$CalibrationFactor = \frac{SetValue}{ActualValu e}$						
Syntax: <i>Calibrate</i> c, n, f	(c = 'V', 'L')					
(n	= 1 65535)					
(f	= 0.0001 10000)					
n - f -	'V' = Velocity calibration 'L' = Length calibration Calibration duration in seconds (for velocity calibration) Number of measuring objects (for length calibration) Nominal value in m/s (for velocity calibration) al value in m (for length calibration)					

Signalerror can be set to 1 in order to increase the certainty of the calibration; thus velocity 0 is forbidden. It is also possible to set a minimum measuring rate via *Minrate*. Should this value come below, an error message ensues (see chapter 11.3, Error messages).

The command Constant

The command returns the system constant. This constant contains several calculation factors for the velocity that results from different lenses and magnification factors. The default setting is made ex works and is not changeable.

Syntax: Constant

The command *Controltime*

The VLM500 has automatic control for the exposure time (see page 73, The command *Exposure*) for highly reflecting or changing surfaces and lamp intensity (see page 74, The command *Illmax* and page 74, The command *Illmin*). If a measurement object is too dark, then the device can be underloaded. This has effects on the signal quality, but does not interrupt the measurement. If, however, the VLM500 is overloaded, thus signals could no longer be received and it results into a measurement failure. To prevent this, several mechanisms were implemented that react before an overload and down-regulate the lamp intensity, for example.

When measuring on surfaces that show strong distinctions in their quality and after a bright spot must be blocked this parameter *Controltime* specifies how much time must pass until the VLM500 attempts again to increase the lamp intensity and exposure time. The standard value is 0.1 seconds.

Syntax: *Controltime* [f] (f = 0.01 ... 1.00) Unit: s

The command Epsilon

The frequency generated in the VLM500 by the measurement principle (see chapter 2.1, Physical principle) is evaluated. The single periods are tested for plausibility (similarity to previous periods). In case of validity, the individual periods are summarized to a burst and the period duration is measured. The frequency is hence calculated and then converted in a velocity.

The first value of the parameter *Epsilon* thereby returns the allowed percent deviation of each period to the previous, so that it is classified as valid. The higher this value is set, the worse signals the signal processing allows. Incorrect measurements happen with a too high value!

The second value of the parameter is optional and it is only used if it is set as filter principle Tracking 5 or 6 (see page 48, The command *Tracking*). If it is set to 1, other Epsilon values (2. Epsilon table) are used independently by VL500 for low velocities. The input of the second value is only possible if the first is set to automatic.

(c = $0 - 2$. Epsilon table off, $1 - 2$. Epsilon t	able on)	
	,	

The parameter should be left to the setting automatic. Failures or error messages can happen with the incorrect setting of the parameter.

The command *Exposure*

The exposure time of the CCD sensor is set with this command. The maximum adjustable value depends directly on the maximum object velocity *Vmax* and thus also on *Mode*. The higher the velocity selected, the smaller the maximum values for *Exposure*. The setting *Exposure a* allows an automatic control whose limits are set by *Expmax* and *Expmin*.

Syntax: *Exposure* [n] (n = 0 ... 14 – fixed, a – automatic)

For required accuracy better than 0.05, *Exposure* is set fixedly to a small value (e.g. 0 or 1, depending on the application). Otherwise, the value a (automatic) is recommended for maximum material independence.

With bright materials with structure, a locking of *Exposure* to a small value can also be useful in order to prevent a constant readjustment of the exposure time.

The command *Expmax*

This command sets the maximum value of the exposure time of the CCD line (see page 73, The command *Exposure*) that can be accepted by its automatic control. The maximum adjustable value depends directly on the maximum object velocity *Vmax* and thus also on *Mode*. The higher the velocity selected, the smaller the maximum values for *Expmax*. In setting *Expmax* a, the maximum allowed *Expmax* is used automatically. The value must be greater than or equal to *Expmin* in fixed values.

Syntax: *Expmax* [n] (n = 0 ... 14 – fixed, a – automatic)

The parameter should be left to the setting automatic. Failures or error messages can happen with the incorrect setting of the parameter.

The command Expmin

This command sets the minimum value of the exposure time of the CCD line (see page 73, The command *Exposure*) that can be accepted by its automatic control. The minimum adjustable value depends directly on the maximum object velocity *Vmax* and thus also on *Mode*. The lower the selected velocity, the greater the minimum value for Exp*min*. In setting Exp*min auto* the minimum allowed Exp*min* is used automatically. The value must be smaller than or equal to *Expmax* in fixed values.

Syntax: **Expmin** [n] (n = 0 ... 14 – fixed, a – automatic)

The parameter should be left to the setting automatic. Failures or error messages can happen with the incorrect setting of the parameter.

The command Illumination

This command controls the intensity of the LED illumination. The setting *Illumination a* allows an automatic control whose limits are set by *Illmax* and *Illmin*.

Syntax: *Illumination* [n] (n = 0 ... 30 – fixed, a – automatic)

The parameter should be left to the setting automatic.

Failures can happen through overloading and underloading by the incorrect setting of the parameter.

The command *Illmax*

This command sets the maximum value of the LED intensity (see page 74, The command *Illumination*) that can be accepted by its automatic control. The value must be greater than or equal to *Illmin*.

Syntax: Illmax [n] (n = 0 ... 30)

The parameter should be left to the setting 30.

Failures are possible by underloading in incorrect setting of the parameter.

The command Illmin

This command sets the minimum value of the LED intensity (see page 74, The command *Illumination*) that can be accepted by its automatic control. The value must be smaller than or equal to Illmax.

Syntax: *Illmin* [n] (n = 0 ... 30)

The parameter should be left to the setting 0.

Failures are possible by overloading in incorrect setting of the parameter.

The command OED

This command controls the function of the quick overexposure detection.

Syntax: **OED** [n] (n = 0 - off, 1 - on)

The fast overloading detection should only be switched on, if bright measuring objects enter in the measuring window (e.g. single part measurement in test facility for pipes and profiles of stainless steel). If the guide is not good, do not turn on the detection!

The command Periodcount

This command controls the function of period counting type. Counting can be achieved by scanning a full period (full sine wave) or by scanning a half period (half sine wave).

Syntax: *Periodcount* [n] (n = 0, 1)

n = 0 - full period

n = 1 - half period

The parameter should be left to the setting 0.

The command *Permax*

This command sets the maximum number of periods that a burst can have before it is broken down in partial bursts or periods. *Permax 0* forces a reduction in single periods, if possible, in order to reach a maximum dynamics.

Syntax: *Permax* [n] (n = a – dynamics, 16, 32, 64, 128, 240 - fixed)

The parameter should be generally left to the setting a (dynamics).

The command Permin

This command sets the minimum amount of periods that a burst must have in order to be used for the other velocity calculation. The setting *Permin a* allows an automatic control based on the maximum velocity of *Vmax*.

The command can be fed with a second optional value. This second value can only be used if Tracking 5 or 6 is set as filter principle (see page 48, The command *Tracking*). It returns the minimum number of periods that a burst must have if the dynamic minimum periods adjustment is made by Tracking 5 or 6. The input of the second value is only then possible if the first is set to automatic!

Syntax: Permin [n1] [n2] (n = 2 ...15 – fixed, a - Automatic)

(n2 = 2...15 - fixed)

The parameter should be left to the setting automatic. Failures or error messages can happen with the incorrect setting of the parameter.

The command TComp

The command displays the value for the temperature compensation in PPM/K. The deviation of the current temperature from the reference temperature and the value of *TComp* are directly included into the velocity calculation. The presetting is made ex works and is not changeable.

Syntax: TComp

The command *TMax*

The command displays the maximum reached temperatures in the housing. The data is time-stamped.

Syntax: TMax

The command Senslevel

This command sets the sensitivity threshold of the periodic time analyzer. This can be required if the measurement object shows a weak surface structure.

Syntax: *Senslevel* [n] (n = 0 ... 3)

n = 0 - very sensitive, for weak measurement signals

n = 3 - less sensitive, strong measurement signals

The parameter should be left to the factory setting. Failures or error messages can happen with the incorrect setting of the parameter.

The command SetAuto

This command sets some system parameters to automatic dependent on the parameter or to the standard values (see Table 35). The setting *SetAuto 4* sets *Exposure* fixedly to the value that would accept control with the current surface quality after 2.5 seconds. Without parameter *SetAuto 1* is executed.

Syntax: *SetAuto* [n] (n = 1 ... 4)

- n = 1 Standard, Release of full control ranges
- n = 2 No exposure time regulation for shiny/bright surfaces
- n = 3 Exposure time regulation limited to half of the range

n = 4 - No exposure time regulation, but determination of the optimum exposure time for the current material

Table 35: Parameter of SetAuto

n	Amplifier	Exposure	!	Illumination	Illmax	Illmin	Permin	Expmax	Expmin
1		auto						auto	auto
2		0						auto	auto
3	auto	auto		auto	30	0	auto	0,5*max. Expmax	auto
4		Fixed	after					-	-
		2.5s							

The command Type

The command displays the type of measuring device.

Syntax: Type

The command Video

With this command, the operation mode of the CDD line can be switched to image recording. This function is used for device inspections by the manufacturer. A specific adapter cable is needed for connecting it to an oscilloscope. The measuring function is deactivated in this mode!

Syntax: Video

9.15 Read commands

Read commands serve for asynchronously reading out measuring values. They are processed particularly fast by the command interpreter. All read commands are inserted with a letter and implemented after the following CR (ODH). The value is put out with fixed formatting (see below) and completed with CR LF (ODH OAH).

Table 36: Read commands

Comm	Return value	Unit	Decimal places	Example
and				
В	Number of bursts	-	0	1235
D	FIFO filling level	-	0	2
Ε	Exposure time	-	0	12
F	Frequency of the last burst	Hz	2	1234.56
1	LED intensity	-	0	24
L	Length	m	4	1234.5678
Ρ	Number of periods	-	0	12
R	Measuring rate	-	0	45
V	Velocity	m/s	5	-1.23456
X	Number of the last error	-	0	32

10 Technical Data

	VLM500A	VLM500D	VLM500L			
Nominal distance and working range ¹⁾	185 ± 7.5 mm	240 ± 15 mm	170 ± 7.5 mm			
- extended working range ¹⁾	185 ± 15 mm	240 ± 30 mm	170 ± 10 mm			
Measuring range	0.6 1500 m/min	0.48 900 m/min	0.24 180 m/min			
- in extended working range	1.2 3000 m/min	0.96 1800 m/min	0.48 360 m/min			
- with special filter FB2V	0.36 210 m/min	0.30 180 m/min	0.06 90 m/min			
- in extended working range and FB2V	0.72 420 m/min	0.72 330 m/min	0.12 180 m/min			
Measuring uncertainty ²⁾	< 0.025 % at nominal working	distance				
	< 0.05 % in working range and < 0.2 % in extended working range					
Reproducibility ²⁾	< 0.025 %					
Averaging-/Update-Time	> 0.2 ms with additional 1 32 times sliding average					
Length measuring range	Internal length range up to 1,000,000 km					
Detector / principle	CCD sensor / spatial filter with semiconductor grid as reference					
Illumination	White light LED (expected life span: > 5 years ³⁾ , 70 % brightness after 50,000 hours of operation)					
State indicator (LED on top of the VLM500)	Signal (green), Error signal(red) , Communication (yellow), Forward(green), Backward (green)					
Power supply, consumption	24 VDC, max. 25 W					
Temperature range	0 °C 50 °C					
Protection class	IP 65					
EMC	Industrial standard in complian	nce with CE				
Weight, Housing dimensions	approx. 3.3 kg, 260 mm x 160	mm x 90 mm (Standard model A	and D without connections)			
Optional interface cards						
Programming interface (max. 2)	for parameter setting, data ou USB (IUSB), RS-232 (I232), RS-4					
Opto-isolated outputs 4)	ERROR	Error Signal				
	STATUS	Signal status				
Opto-isolated inputs 5)	TRIGGER 1	External trigger sig	nal			
	STANDBY ⁶⁾	Idle mode / Lock				
	DIRECTION	Definition of the d	irectional of the movement			
Pulse output (Encoder)	A/B, 2 phases 90°, resolution 8					
	Optionally as Open Collector (IPPL), 5V active (IP5V) $^{7)}$ or Push Pull (IPPP) $^{7)}$					
Analog output	Current output, adjustable as	0 20 mA, 0 24 mA, 4 20 m	A (IAUN)			
Fieldbus interface	Profibus DP (IFPB), Telnet via FastEthernet (IFFE), Profinet IO (IFPN)					
Standard scope of delivery	VLM500, Power supply cable,	Connection cable, positioning ai	d, USB stick with			
	documentation and software, printed manual					

¹⁾ Larger working ranges can be offered according to customer demands

²⁾ DIN 1319 / ISO 3534, of measured length, test conditions: measuring length 10 m, active tracking, constant conditions in: temperature (20 °C), distance, velocity, illumination.

- ³⁾ Simple replacement by user.
- ⁴⁾ OpenCollector interface card (IOPL). Connections are isolated and short circuit proof.
- ⁵⁾ Opto isolated, short circuit proof, max. voltage 50 VDC, 36 VAC
- ⁶⁾ The standby input can be uses as a second trigger input (TRIGGER 2).
- ⁷⁾ IP5V and IPPP provide output frequencies up to 4 MHz.

11 Annex

11.1 List of commands

General commands

Table 37: General commands

Command	Meaning	Unit	Possible values	Default setting
Av erage	Averaging time	ms	0 or 0.2 10000	30 ms
Calf actor	Set Calibration factor	-	0.950000 1.050000	1.000000
Cl ock	Display and setting time	-	hh:mm:ss	-
Controlh old	Holding the control circuits (only for single item measurements)	-	0 - off 1 - on	0
Da te	Displays and setting date	-	dd.mm.yy	-
Di rection	Direction	-	0 - forward 1 - backwards 2 – external forward 3 – external backwards a - automatic	0
Er ror	Display of the last error	-	-	-
ErrorL evel	Behaviour of OUT0	-	0 – active if OK 1 – active in case of error	0
Fm ax	Display maximum frequency	-	-	-
Help oder ?	Help pages	-	-	-
Ho ldtime [n1]	Hold time	ms	10 65535	250 ms
Ho ldtime [n2]	Reaction time	ms	9 65534	-
Info	Displays software revision and serial number	-	-	-
Minr ate	Monitoring measurement rate	-	0 - of, 1 99 - on	0
Mode	Switching grating constant	-	0 - single, 1 - double	0
N umber	Object counter	-	0 65535	0
Par ameter [c]	Displays all general parameters	-	C – Display all system parameters	-
Pos t	Self test	-	-	-
REM	Comment	-	-	-
Selt rigger	Use standby input as second trigger input	-	0 – no 1 - yes	0
Ser ialnumber	Displays serial number	-	-	-
SID	Displays active interface	-	-	-
Sig nalerror	Behaviour in case of signal dropout or standstill	-	0 – no error 1 - error	0
Sta rt	Starting length integration	-	-	-
Sto p	Stopping length integration	-	-	-
Tem perature	Display of the temperature	-	-	-
Terminal	Display of the terminal assignment	-	-	-
Tra cking	Type of signal processing	-	0 6 (see text)	2
Trig ger	Trigger	-	0 - H-level 1 - L-level 2 - L/H-edge 3 - H/L-edge 4 - AND connection (HIGH) of 2 light barriers	0

Command	Meaning	Unit	Possible values	Default setting
			5 – AND connection (HIGH) of 2 light barriers	
Vm ax	Maximum velocity	-	0.01 100.00	10.0
W indow	Window length	-	1 32	8

Commands for Analog Output

Command	Meaning	Unit	Possible values	Default setting
AO	Display Analog parameter	-	-	-
AOMi n	Minimum value	-	-1000.0 1000.0	0.000
AOMa x	Maximum value	-	-1000.0 1000.0	1.000
AOO n	On/Off	-	0 - off 1 - on	0
AOS ync	Output control	-	0 – average synchronous 1 – trigger synchronous 2 – burst synchronous	0
AOV alue	Value	-	V - Velocity R – Measuring rate Q - Quality	V

Table 38: Commands for analog output

Commands for ECC control

Table 39: Commands for ECC control

Command	Meaning	Unit	Possible values	Default setting

Command	Meaning	Unit	Possible values	Default setting
ECC	Display ECC parameter	-	-	-
ECCOn	On/Off	-	0 - off 1 - on	0
ECCR1	Measuring rate 1	-	0 99	10
ECCR2	Measuring rate 2	-	0 99	20
ECCV1	Velocity 1	m/s	0.0001 99.9999	0.0800
ECCV2	Velocity 2	m/s	0.0001 99.9999	0.1200

Commands for output via pulse output 1

Command	Meaning	Unit	Possible values	Default setting
PO1	Display of the parameters	-	-	-
PO1E CC	Switching of ECC control to first pulse output	-	0 - off 1 - on	0
PO1F actor	Scaling factor	-	-2500.0 2500.0	1
PO1On	On/Off	-	0 - off 1 - on	1
PO1Ou tput	Output type of the second phase	-	0 - A+B 1 - A+DIR	0
PO1S ync	Output control	-	0 – average synchronous 1 – trigger synchronous 2 – burst synchronous	0
PO1V alue	Value	-	V - Velocity R – Measuring rate Q - Quality	V

Table 40: Commands for pulse output 1

Commands for output via pulse output 2

Command	Meaning	Unit	Possible values	Default setting
PO2	Display of the parameters	-	-	-
PO2E CC	Switching of ECC control to first pulse output	-	0 - off 1 - on	0
PO2Factor	Scaling factor	-	-2500.0 2500.0	1
PO2On	On/Off	-	0 - off 1 - on	1
PO2Ou tput	Output type of the second phase	-	0 - A+B 1 - A+DIR	0
PO2S ync	Output control	-	0 – average synchronous 1 – trigger synchronous 2 – burst synchronous	0
PO2Value	Value	-	V - Velocity R – Measuring rate Q - Quality	V

Table 41: Commands for pulse output 2

Commands for output via pulse output 3

Command	Meaning	Unit	Possible values	Default setting
PO3	Display of the parameters	-	-	-
PO3ECC	Switching of ECC control to first pulse output	-	0 - off 1 - on	0
PO3F actor	Scaling factor	-	-2500.0 2500.0	1
PO3On	On/Off	-	0 - off 1 - on	1
PO3Ou tput	Output type of the second phase	-	0 - A+B 1 - A+DIR	0
PO3S ync	Output control	-	0 – average synchronous 1 – trigger synchronous 2 – burst synchronous	0
PO3V alue	Value	-	V - Velocity R – Measuring rate Q - Quality	v

Table 42: Commands for pulse output 3

Commands for the output via the serial interface 1

Command	Meaning	Unit	Possible values	Default setting
SO1	Displays S1 parameters	-	-	-
SO1F ormat	Output format	-	See text	V*60:6:2 'm/min'
SO1Interface	Setting serial interface 1	-	See text	9600 N X D
SO10n	On/Off	-	0 - off 1 - on	0
SO1S ync	Output control	-	0 - Time 1 - Trigger 2 - Burst	0
SO1T ime	Output time	ms	1 65535	500 ms

Table 43: Commands for serial interface 1

Commands for the output via the serial interface 2

Command	Meaning	Unit	Possible values	Default setting
SO2	Displays S2 parameters	-	-	-
SO2Format	Output format	-	See description	#rat'r:3t42
SO2Interface	Setting serial interface 2	-	See description	9600 N X D
SO2On	On/Off	-	0 - off 1 - on	0
SO2S ync	Output control	-	0 - Time 1 - Trigger 2 - Burst	0
SO2Time	Output time	ms	1 65535	500 ms

Table 44: Commands for serial interface 2

Commands for the light barrier controller LBC9-CA

Command	Meaning	Unit	Possible values	Default setting
LBC	Displays Parameter of the LBC control	-	-	-
LBCD1	Distance first STOP to START light barrier	m	0 999.9999	-
LBCD2	Distance second STOP to START light barrier	m	0 999.9999	-
LBCD3	Distance third STOP to START light barrier	m	0 999.9999	-
LBCD4	Distance fourth STOP to START light barrier	m	0 999.9999	-
LBCD5	Distance fifth STOP to START light barrier	m	0 999.9999	-
LBCD6	Distance sixth STOP to START light barrier	m	0 999.9999	-
LBCD7	Distance seventh STOP to START light barrier	m	0 999.9999	-
LBCD8	Distance eight STOP to START light barrier	m	0 999.9999	-
LBCON	Switching in the offset recognition	-	0 - off 1 - on	0

Table 45: Commands for the light barrier controller LBC9-CA

Commands for offline measurement

Table 46: Commands for the serial offline measurement

Command	Meaning	Unit	Possible values	Default setting
OFF	Display parameter for offline operation	-	-	-
OFFF actor	Scaling factor	-	-2500.0 2500.0	1
OFFL ine	Starting the offline measurement	-	[T] waiting for trigger	-
OFFM easure	Measuring time	S	1 65535	10 s
OFFR ead	Reading out offline data	-	-	-
OFFS ync	Output control	-	0 – average synchronous 1 – trigger synchronous 2 – burst synchronous	0
OFFT ime	Averaging time and storage time	ms	2 65535	50 ms
OFFV alue	Value	-	F - Frequency	V

L - Length
N – Object counter
R – Measuring rate
S - R + V
V - Velocity

Test commands

Table 47: Test commands

Command	Meaning	Unit	Possible values	Default setting
TestA O	Test of the analog output	-	-	-
TestF ilter	Test of the filter board	-	-	-
Testl O	Test of the inputs and outputs	-	-	-
TestM easure	Test of the measuring function	-	-	-
TestP S	Test of the power supply	-	-	-
TestQ uality	Test of the signal quality	-	-	-
TestTComp	Test of the temperature compensation	-	-	-

Read commands

Comm and	Return value	Unit	Decimal places	Example
В	Number of Bursts	-	0	1235
D	FIFO filling level	-	0	1
Ε	Exposure time	-	0	12
F	Frequency of the last burst	Hz	2	1234.56
1	Lamp intensity	-	0	24
L	Length	m	4	1234.5678
Ρ	Number of periods	-	0	12
R	Measuring rate	-	0	45
V	Velocity	m/s	5	-1.23456
X	Number of the last error	-	0	32

Table 48: Read commands

Service commands

Table 49: Service commands

Determination	Meaning	Remark
P assword	Set password	Default setting 'WEGA'
Resta rt	Restarts device	Interrupts measurement
Resto re	Load a certain parameter set	Interrupts measurement
Si mulation	Simulation f, [n] f - Velocity in m/s n - Measuring rate	Interrupts measurement
Standby	Standby Mode	Stops measuring function and switches the light off
Sto re	Store parameter to a certain storage place	With password protection, interrupts measurement for a short time
Update	Update of the firmware (only via Interface S1)	Use the program VLMTool instead of the command!

System commands

Command	Meaning	Unit	Possible values	Default setting
Am plifier	Signal amplification	-	0 3 - fixed a - Automatic	4
Bw	Bandwidth	%	a - Automatic 10 75	0
Calf actor	Calibration factor	-	0.950000 1.050000	1.000000
Cali brate	Calibration c, n, f c -Velocity or length n -Measuring time in s / Number f - Calibration value m/s o. m		V, L 1 65535 0.0001 10000	-
Cons tant	Display Ex factory calibration	-	-	Ex factory
Cont roltime	Control period in case of underload	S	0.01 1.00	0.1
Ep silon [f]	Percent deviation of the periods	%	a - Automatic 0.787 50.0	0
Ep silon [c]	Activation of the 2nd Epsilon table	-	0 - off 1 - on	0
Expo sure	Exposure time	-	0 14 - fixed a - Automatic	15
Ехрта х	Maximum exposure time during control	-	0 14 - fixed a - Automatic	15
Expmin	Minimum exposure time during control	-	0 14 - fixed a - Automatic	15
Illu mination	Intensity of the LED	-	0 30 - fest a - Automatic	31
Illmax	max. LED intensity during control	-	0 30	30
Illmi n	min. LED intensity during control	-	0 30	0
OED	Fast overexposure recognition	-	0 - off 1 - on	0
Perma x	Maximum permissible number of periods	-	a - Dynamic 16, 32, 64, 128 - fixed	0
Perm in [n1]	Minimum permissible number of periods	-	a - Automatic 2 15 - fixed	0
Perm in [n2]	Minimum permissible number of periods for dynamic period adaptation	-	2 15 - fixed	-
TC omp	Display Temperature compensation	-	-	Ex factory
TM ax	Display the maximum reached temperature	°C	-	-
SensL evel	Sensitivity of the period duration measuring device	-	0 3	1
Set Auto	Setting Parameter to Automatic	-	1 4 (see text)	-
Ту ре	Displays device type	-	-	-

-

_

Table 50: System commands

Video

Video mode

_

11.2 Programming examples

Print protocol

Steel plates are cut in a production plant. A VLM500 measuring device with optional laser light barrier and realtime clock is used for final inspection. A print log with date, time, consecutive number with factory identification number and plate length shall be generated.

A light barrier is connected to the input 'TRI1' (trigger input) that detects the start and end of the plate. A printer with serial interface is connected after programming it with interface 1 of VLM500.

Table 51: Example for programming a print log

Command line	Meaning
Trigger 0	Single part measuring
SO1Interface 9600 N D	Baud rate of the printer, no protocol
SO1Sync 1	Output at the end of the plate (trigger)
SO1Format D ' ' C N:6 '/KW1' L:8:3	Output date, time, counter, string, length
S010n 1	Switch on
Store	Save with password input

The abbreviated notation without spaces would also be possible for specifying the format:

```
SO1Format D' 'CN:6'/KW1'L:8:3
```

Pulse output

A wheel with shaft encoder should be substituted. The shaft encoder delivered 2 pulses per millimeter. 50 ms are chosen as sampling frequency due to the process dynamics. The shaft encoder output of the VLM320 is connected to the existing control.

Calculation:

```
Output frequency [in kHz] = factor [1/mm] · velocity [in m/s]
```

Equivalent to:

Pulse number = 1000 · factor [1/mm] · length [m]

Factor = pulse number / (1000 · length [m]) = 2 / (1000 · 0,001) Factor = 2 (i.e. pulses per mm could be entered directly!)

Table 52: Example for programming the pulse input

Command line	Meaning
Average 50	Averaging time 50 ms
PO1Value V	Velocity
PO1Sync 0	Update at equivalent time intervals
PO1Factor 2	2 pulses per mm
PO10n 1	Switch on
Store	Save with password input

11.3 Error messages

All error messages begin with the letter 'E' and a two-digit error number. The last five errors that occurred are cached during the operation from error code 'E10' on. The command *Error* shows the numbers and error texts. The short command X, on the contrary, returns only the last error code. Certain critical and fatal errors will be stored permanently and can be retrieved by calling the command ListError.

A continuous output of the errors from 'E10' on can take place in the format statements *SO1Format* and *SO2Format* with the parameter *X*.

Critical errors mostly demand a modification of the programming or the use conditions. Activating the command *Error* deletes this error from the list

Fatal errors indicate severe hardware errors. The measuring function is switched off in such a case. The device must be checked. These errors are not deleted from the list by activating the command *Error*.

Further descriptions appear in brackets in some error texts that are self-explanatory in the following table.

Code	Meaning	Cause
E00 No ERROR	No error occurred	-
E01 Missing parameter	No or too few parameters specified	Incorrect command input
E02 Value out of range	Number too small or too big	Incorrect command input
E03 Invalid command	Non-existent command	Incorrect command input
E04 Invalid parameter	Parameter not allowed	Incorrect command input
E05 No data	No data in memory	Offline Measurement
E06 Memory full	Memory full	Too many measured values during offline measurement
E07 ESC user abort	Abort by ESC	Offline measurement and calibration
E08 Calibration Error	Faulty calibration	Dropout during the calibration
		(see The command Signalerror)
E09 Illegal Use	Input disabled for 60 s	Password entered incorrectly 3 times
E10 SO1 output error	Error during S1 output	Output too fast
E11 SO1 input error	Parity error, buffer overflow etc.	Transmission error, see SO1Interface
E12	not in use	
E13 SO2 output error	Error during S2 output	Output too fast
E14 SO2 input error	Parity error, buffer overflow etc.	Transmission error, see SO2Interface
E15 – E16	not in use	
E17 Analog output error	Error during analog output	Output too fast
E18 Incremental output error	Error during pulse output	Output too fast
E19 Offline output error	Error during offline measurement	Measurement too fast
E20 Warning, check MODE and VMAX	Overflow	Check settings of <i>Mode</i> and <i>Vmax</i> , refer to data sheet
E21	not in use	

Table 53: Error during command input and processing

Code	Meaning	Cause
E22 Warning, AVERAGE adjusted	Value too short chosen for AVERAGE	The internal signal processing is faster than the AVERAGE value
E23 VMAX too large for	VMAX too high for	DIR is set to auto and VMAX setting is too high
'direction a'	automatic direction	for the automatic direction detection
	detection	
E24 No direction board	The entered command is	Setting DIR to auto is not allowed without an
found	not accepted because an	automatic direction detection board (DIRB)
	automatic direction	
E25 Output is busy,	detection is not installed	Commands requiring an input such as Test
please try again later!	Command blocked by other interface	Commands requiring an input such as <i>Test</i> , <i>TestAO</i> , etc. cannot be executed simultaneously
picase il y again later:	interface	on both interfaces S1 and S2
E26 Warning, Signal error	Faulty length measurement	Signal dropout during length measurement
during length		(see The command Signalerror)
measurement		
E27 Warning, FPGA	Measuring values lost	The measuring value cache was exceeded.
overflow detected! E28 External Standby not	When using the standby	TRIGGER was set using two trigger inputs. This
possible with current	input, not all settings of	can only be achieved, when SELTRIGGER is set.
TRIGGER setting!	TRIGGER are allowed	
E29	not in use	
E30 Periods out of range	Error in signal processing	Invalid number of periods
E31 Over temperature	Internal temperature higher	Switch of the device immediately, cooling
detected!	than 75 °C	required
E32 LED out of order detected!	Light source defect. Too high voltage	Light source is defect and must be replaced Contact service!
E33 Watchdog timer	Reset by watchdog	Processor crashed (also during overload)
reset	neset of materials	
E34 LED out of order	Light source defect. Too	Light source is defect and must be replaced
detected!	high current	Contact service!
E35 I ² C arbitration error	Internal software error	Unknown error on the internal I ² C-Bus
detected E36 I ² C counter level	Internal software error	Unknown error on the internal I ² C-Bus
changed	internal software error	Onknown error on the Internal I ⁻ C-Bus
E37 I ² C time out occurred	Internal software error	Unknown error on the internal I ² C-Bus
E38 I ² C control part reset	Internal software error	Unknown error on the internal I ² C-Bus
E39 I ² C initialization of	Internal software error	Unknown error on the internal I ² C-Bus
registers		
E40 Error reading	FLASH component dropout	Fatal error, device must be repaired
PARAMETER, service		
necessary! E41 – E42	not in use	
E43 Power supply error,	Power supply error	Fatal error, device must be repaired
service necessary!	· · · · · · · · · · · · · · · · · · ·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
E44 Parameter not	Parameter could not be	Fatal error, device must be repaired
stored!	stored!	
E45 FPGA reset failed!	Faulty reset of the FPGA	Fatal error, device must be repaired
E46 Too high frequency!	Plausibility Error	Measured data are wrong
E47 – E59	not in use	

E60 FPGA (ADSC) not foundNo availability of signal processorInternal Hardware errorE61 SRAM not foundNo availability of SRAMInternal Hardware errorE62 FRAM not foundNo availability of FRAMInternal Hardware errorE63 RTC not foundNo availability of Real time clockInternal Hardware errorE64 DAC not foundNo availability of digital analog converterInternal Hardware errorE65 FB not foundNo availability of filter boardInternal Hardware errorE66 DTS not foundNo availability of digital temperature sensorInternal Hardware errorE67 TERM not foundNo availability of terminal boardInternal Hardware errorE68 - E79not in useInternal Hardware errorE80 Non valid hex fileWrong formatNo valid fileE81 Illegal address rangeWrong address rangeNo valid fileE82 User terminatedCancellationTransmission interruptedE84 Verification error, no valid program in flash memoryThere is no fieldbus module installed in the VLM, for which an update could be executedThe 'update f' - command was called regardless of an installed fieldbus module which an update could be executedNo valid file for this device.E86 Hex file not valid forFile is not suitable for this gaugeAno ti useE87 - E98not in useNo valid file for this device.E99 unknown errorUnknow errorNo valid file for this device.	Code	Meaning	Cause
E62 FRAM not foundNo availability of FRAMInternal Hardware errorE63 RTC not foundNo availability of Real time clockInternal Hardware errorE64 DAC not foundNo availability of digital analog converterInternal Hardware errorE65 FB not foundNo availability of digital analog converterInternal Hardware errorE66 DTS not foundNo availability of digital temperature sensorInternal Hardware errorE67 TERM not foundNo availability of terminal boardInternal Hardware errorE68 - E79not in useInternal Hardware errorE80 Non valid hex fileWrong formatNo valid fileE81 Illegal address rangeWrong address rangeNo valid fileE82 User terminated valid program in flash memoryCheck after programming failedDo not switch off the device and do not leave the boot loader! Try again with command Update.E86 Hex file not valid for terst au update could be executedTher 'update f' - command was called regardless of an installed fileldbus moduleE86 Hex file not valid for this gaugeFile is not suitable for this deviceNo valid file for this device.E86 Hex file not valid for this gaugeFile is not suitable for this deviceNo valid file for this device.E87 - E98not in useNo valid file for this device.			Internal Hardware error
E63 RTC not foundNo availability of Real time clockInternal Hardware errorE64 DAC not foundNo availability of digital analog converterInternal Hardware errorE65 FB not foundNo availability of filter boardInternal Hardware errorE66 DTS not foundNo availability of digital temperature sensorInternal Hardware errorE67 TERM not foundNo availability of terminal boardInternal Hardware errorE68 - E79not in useInternal Hardware errorE80 Non valid hex fileWrong formatNo valid fileE81 Illegal address rangeWrong address rangeNo valid fileE82 User terminatedCancellationTransmission interruptedE84 Verification error, no valid program in flash memoryCheck after programming failedDo not switch off the device and do not leave the boot loader! Try again with command Update.E85 No target device to update foundThere is no fieldbus module installed in the VLM, for which an update could be executedThe 'update f' - command was called regardless of an installed fieldbus moduleE86 Hex file not valid for this gaugeFile is not suitable for this deviceNo valid file for this device.E86 Hex file not valid for this gaugeFile is not suitable for this deviceNo valid file for this device.	E61 SRAM not found	No availability of SRAM	Internal Hardware error
clockE64 DAC not foundNo availability of digital analog converterInternal Hardware errorE65 FB not foundNo availability of filter boardInternal Hardware errorE66 DTS not foundNo availability of digital temperature sensorInternal Hardware errorE67 TERM not foundNo availability of terminal boardInternal Hardware errorE68 - E79not in useInternal Hardware errorE80 Non valid hex fileWrong formatNo valid fileE81 Illegal address rangeWrong address rangeNo valid fileE82 User terminatedCancellationTransmission interruptedE84 Verification error, no valid program in flash memoryCheck after programming filedDo not switch off the device and do not leave the boot loader! Try again with command <i>Update</i> .E85 No target device to update foundThere is no fieldbus module which an update could be which an update could be executedThe 'update f' - command was called regardless of an installed fieldbus moduleE86 Hex file not valid for this gaugeFile is not suitable for this deviceNo valid file for this device.E86 Hex file not valid for this gaugeFile is not suitable for this deviceNo valid file for this device.E87 - E98not in useNo valid file for this device.	E62 FRAM not found	No availability of FRAM	Internal Hardware error
analog converterE65 FB not foundNo availability of filter boardInternal Hardware error boardE66 DTS not foundNo availability of digital temperature sensorInternal Hardware errorE67 TERM not foundNo availability of terminal boardInternal Hardware errorE68 – E79not in useInternal Hardware errorE80 Non valid hex fileWrong formatNo valid fileE81 Illegal address rangeWrong address rangeNo valid fileE82 User terminatedCancellationTransmission interruptedE84 Verification error, no valid program in flash update foundThere is no fieldbus module installed in the VLM, for which an update could be executedThe 'update f' - command was called regardless of an installed fieldbus moduleE86 Hex file not valid for this gaugeFile is not suitable for this evecutedNo valid file for this device.E86 Hex file not valid for this gaugeFile is not suitable for this evecutedNo valid file for this device.E87 - E98not in useNo valid file for this device.	E63 RTC not found	•	Internal Hardware error
Internal Part of the sensorInternal Hardware errorE66 DTS not found temperature sensorInternal Hardware errorE67 TERM not found boardNo availability of terminal boardInternal Hardware errorE68 – E79not in useInternal Hardware errorE80 Non valid hex fileWrong formatNo valid fileE81 Illegal address rangeWrong address rangeNo valid fileE82 User terminatedCancellationTransmission interruptedE84 Verification error, no valid program in flash nemoryCheck after programming failedDo not switch off the device and do not leave the boot loader! Try again with command Update.E85 No target device to update foundThere is no fieldbus module installed in the VLM, for which an update could be executedThe 'update f' - command was called regardless of an installed fieldbus module of an installed fieldbus moduleE86 Hex file not valid for this gaugeFile is not suitable for this deviceE87 – E98not in use	E64 DAC not found	. –	Internal Hardware error
temperature sensorE67 TERM not foundNo availability of terminal boardInternal Hardware errorE68 - E79not in useInternal Hardware errorE80 Non valid hex fileWrong formatNo valid fileE81 Illegal address rangeWrong address rangeNo valid fileE82 User terminatedCancellationTransmission interruptedE84 Verification error, no valid program in flash update foundCheck after programming failedDo not switch off the device and do not leave the boot loader! Try again with command Update.E85 No target device to update foundThere is no fieldbus module installed in the VLM, for which an update could be executedThe 'update f' - command was called regardless of an installed fieldbus moduleE86 Hex file not valid for this gaugeFile is not suitable for this deviceNo valid file for this device.E87 - E98not in useNo valid file for this device.	E65 FB not found		Internal Hardware error
E68 - E79not in useInternal Hardware errorE80 Non valid hex fileWrong formatNo valid fileE81 Illegal address rangeWrong address rangeNo valid fileE82 User terminatedCancellationTransmission interruptedE84 Verification error, no valid program in flashCheck after programming failedDo not switch off the device and do not leave the boot loader! Try again with command Update.E85 No target device to update foundThere is no fieldbus module installed in the VLM, for which an update could be executedThe 'update f' - command was called regardless of an installed fieldbus moduleE86 Hex file not valid for this gaugeFile is not suitable for this deviceNo valid file for this device.E87 - E98not in useNo valid file for this device.	E66 DTS not found		Internal Hardware error
E80 Non valid hex fileWrong formatNo valid fileE81 Illegal address rangeWrong address rangeNo valid fileE82 User terminatedCancellationTransmission interruptedE84 Verification error, no valid program in flash memoryCheck after programming failedDo not switch off the device and do not leave the boot loader! Try again with command <i>Update</i> .E85 No target device to update foundThere is no fieldbus module installed in the VLM, for which an update could be executedThe 'update f' - command was called regardless of an installed fieldbus moduleE86 Hex file not valid for this gaugeFile is not suitable for this deviceNo valid file for this device.E87 - E98not in useNo target in use	E67 TERM not found	1	Internal Hardware error
E81 Illegal address rangeWrong address rangeNo valid fileE82 User terminatedCancellationTransmission interruptedE84 Verification error, no valid program in flash memoryCheck after programming failedDo not switch off the device and do not leave the boot loader! Try again with command Update.E85 No target device to update foundThere is no fieldbus module installed in the VLM, for which an update could be executedThe 'update f' - command was called regardless of an installed fieldbus moduleE86 Hex file not valid for this gaugeFile is not suitable for this deviceNo valid file for this device.E87 - E98not in useNo target is not suitable for this not in useNo valid file for this device.	E68 – E79	not in use	Internal Hardware error
E82 User terminatedCancellationTransmission interruptedE84 Verification error, noCheck after programming failedDo not switch off the device and do not leave the boot loader! Try again with command Update.valid program in flash memoryfailedDo not switch off the device and do not leave the boot loader! Try again with command Update.E85 No target device to update foundThere is no fieldbus module installed in the VLM, for which an update could be executedThe 'update f' - command was called regardless of an installed fieldbus moduleE86 Hex file not valid for this gaugeFile is not suitable for this deviceNo valid file for this device.E87 - E98not in use	E80 Non valid hex file	Wrong format	No valid file
E84 Verification error, no valid program in flash memoryCheck after programming failedDo not switch off the device and do not leave the boot loader! Try again with command Update.E85 No target device to update foundThere is no fieldbus module installed in the VLM, for which an update could be executedThe 'update f' - command was called regardless of an installed fieldbus moduleE86 Hex file not valid for this gaugeFile is not suitable for this deviceNo valid file for this device.E87 - E98not in use	E81 Illegal address range	Wrong address range	No valid file
valid program in flash memoryfailedboot loader! Try again with command Update.E85 No target device to update foundThere is no fieldbus module installed in the VLM, for which an update could be executedThe 'update f' - command was called regardless of an installed fieldbus moduleE86 Hex file not valid for this gaugeFile is not suitable for this deviceNo valid file for this device.E87 - E98not in use	E82 User terminated	Cancellation	Transmission interrupted
update found installed in the VLM, for of an installed fieldbus module which an update could be executed E86 Hex file not valid for File is not suitable for this No valid file for this device. this gauge device E87 – E98 not in use	valid program in flash		
this gaugedeviceE87 - E98not in use	•	installed in the VLM, for which an update could be	
			No valid file for this device.
E99 unknown error Unknow error	E87 – E98	not in use	
	E99 unknown error	Unknow error	

11.4 Meaning of the light diodes

able 54: Meaning of the light diodes

LED	Colour	Meaning	
Signal-LED	green	Signal available	
	red	Signal quality not good, also see Minrate and ECCOn	
Busy-LED	yellow Command is processed, also during calibration and offline measurement		
	off	No command processing	
	flash	During standby mode	
Error-LED	red	Shortly on in case of critical errors (see table 53 and 54)	
	off	No error	
Forward-LED	green	Direction alignment set to forward (from housing bottom to lid)	
	off	Direction alignment set to backwards	
Backward-LED	green	Direction alignment set to backwards (from housing bottom to lid)	
	off	Direction alignment set to forward	

11.5 Units of the output values

Determination	Unit	Value range for task	Max. Resolution
Velocity	1 m/s	± 21474	0,0001 *)
Length	1 m	\pm 214748 (internal: \pm 360288)	0,0001 *)
Object counter	1 item	0 65535	1
Measuring rate	none	01000	0,1 **)
	waat oo ooifi ooti o	n the value is sutput with three designal d	tata duning C1 and C2 automat

Table 55: Measuring values with units and their resolution

*) Without format specification, the value is output with three decimal digits during S1- and S2-output. In case of hexadecimal output, the output is given with maximum resolution.

**) Without format specification, the value is output without decimal digits during S1- and S2-output. In case of hexadecimal output, the output is given with maximum resolution.

11.6 Terminal assignment

Device connection 1, RS-232, RS-4xx, USB

The device connection 1 is reserved for the communication boards in slot 2. The terminal assignment is fixed with respect to type of the communication board. The following table shows the according assignment.

Table 56: Device connection #1

Pen number	Colour internal	Assignment RS-232	RS-4xx 2 wire	RS-4xx 4 wire	USB
1	brown	RxD	R+ / T+ / A	R+ / A	5V
2	white	TxD	R- / T- / B	R- / B	D-
3	blue	GND	do not use	T- / Z	GND
4	black	do not use	do not use	T+ / Y	D+
5	grey	do not use	do not use	do not use	do not use

Device connection 2, 4 and 5

The terminal assignment of the connections 2, 4 and 5 are wired according to customer specification and displayed in the enclosed documents.

Device connection 3 with current supply 24V/DC

Table 57: Device connection #3, Current supply 24V/DC

Pen number	Color cable	Assignment 24V/DC
3	black 1	0 Volt
4	black 2	24 Volt
PE	green/yellow	Protective Earth

 $[\]triangle$

Caution: Ground the device with the grounding cable before connecting it to the current supply.

11.7 Plug connector

Assembly instructions for plug connector connections 1, 2, 4 and 5

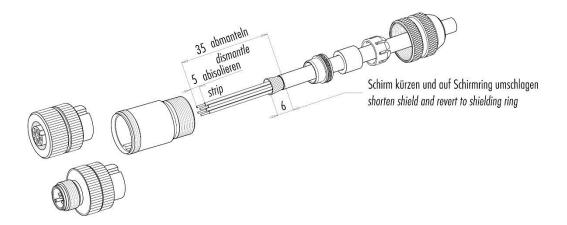


Figure 31: Assembly instruction for shielded plug connectors connections 1, 2, 4 and 5

Assembly instructions for plug connector connection 3

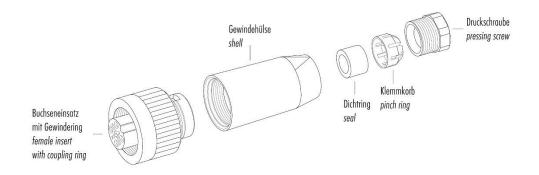
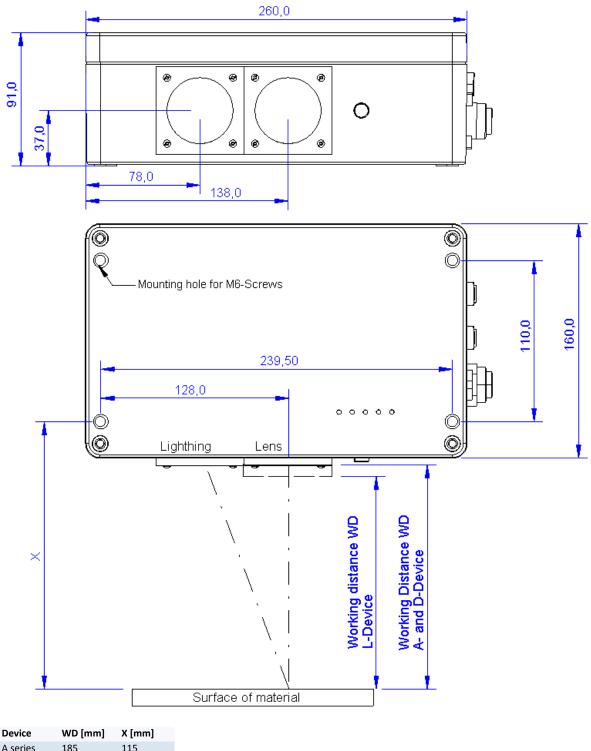


Figure 32: Assembly instruction for shielded plug connectors connection 3 (24 V DC)

Cable plug 5-pole, M12 A coding, RS-232	Cable plug 5-pole, M12 A coding, Different inputs and outputs, e.g. analog output
	30 5 04 0 20 01
Cable plug 8 pole, M12 A coding, Pulse output 5V	Cable box 8 pole, M12 A coding, digital inputs and outputs (IN, OUT)
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Cable plug 4-polig, M12 B coding, Profibus output	Cable box 4-polig, M12 B coding, Profibus input

Contact assignment cable plugs and cable boxes

Figure 33: Assignment of the plug connector (Display on the plug page)


11.8 Article numbers

The most common extension cards, connection cables/plugs, replacement windows and replacement lamps are listed in table 52. Other articles are available, like protective housing, assembly accessories and single sensors without accessories. These must be requested at a trader or the manufacturer if required.

Table 58: Article numbers

Article No.	Determination
41-1101-00	VLM500A Set with accessories
41-1103-00	VLM500D Set with accessories
41-1105-00	VLM500L Set with accessories
19-1201-00	Interface card IOPL – Input/Output Positive logic
19-1204-00	Interface card I232 – RS232 interface
19-1205-00	Interface card I4U2 – RS485 as 2 wire line
19-1206-00	Interface card I4U4 – RS485 as 4 wire line
19-1207-00	Interface card IUSB – USB interface
19-1208-00	Interface card IFPB – Profibus DP interface
19-1209-00	Interface card IFFE – Fast-Ethernet interface
19-1210-00	Interface card IFPN – Profinet IO interface
19-1211-00	Interface card IPPL – Pulse output Positive logic
19-1212-00	Interface card IPPP – Pulse output Push-Pull
19-1213-00	Interface card IP5V – Pulse output 5 V
19-1214-00	Interface card IA00 – Analog output 0 mA 20 mA
19-1215-00	Interface card IA04 – Analog output 0 mA 24 mA
19-1216-00	Interface card IA40 – Analog output 4 mA 20 mA
19-1217-00	Interface card ILBC – Connection for light barrier controller LBC9-CA
19-1218-00	Interface card IECC – Rotary encoder switching
19-1042-00	Filter card DIR 1 with additional automatic direction recognition
19-1000-00	Option for glowing metals (VLM500 /h)
19-1021-00	Option Pressure Compensation Segment
15-0019-00	Programming cable RS-232, 5m
15-0020-00	Connection cable M12F5A-M12F5A, 5m
15-0026-00	Current supply cable 24V, 5m
15-0000-00	Terminating resistor for Profibus
15-0010-00	Cable plug, 5 pole, A-Cod.
15-0011-00	Cable box, 5 pole, A-Cod.
15-0012-00	Cable box, 4 pole, RD24
15-0013-00	Cable box, 7 pole, RD24
15-0014-00	Cable plug Profibus OUT, 4 pole, B-Cod.
15-0015-00	Cable box Profibus IN, 4 pole, B-Cod.
15-0016-00	Cable plug, 8 pole, A-Cod.
15-0017-00	Cable box, 8 pole, A-Cod.
15-0018-00 15-0021-00	Cable plug Ethernet, 4-pin, D-coded Cable box, 4 pole, RD24, 90°
15-0021-00	
15-0022-00	Cable box, 7 pole, RD24, 90° Cable plug, 5 pole, A-Cod., 90°
15-0023-00	Cable box, 5 pole, A-Cod., 90°
11-0001-00	USB to RS-232 Adapter, 0.2m
14-0000-00	Replacement lamps LED
14-0002-00	Replacement window OW2 (Standard)
14-0002-00	Replacement window OW2 (Standard)
14-0003-00	Replacement window OW2K (Haster) Replacement window OW3 (Heat protection for illumination, VLM500 /h only)
14-0003-00	Replacement window OW3 (Heat protection for objective, VLM500 /h only)
14-0005-00	Replacement window OW5 (Stainless steel)
1+ 0005 00	Replacement window owo (stainess steel)

11.9 Dimensional and installation drawings

WD [mm]	X [mm]
185	115
240	270
170	215
	185 240

Figure 34: Dimensional and installation drawings for different versions (in mm)

The objective window protrudes for 15 mm at device version VLM500L. The working distance (WD) is always measured starting at the objective window. The position of the VLM500L fasting holes corresponds with the device versions VLM500A and VLM500D.

12 Conformity declaration

Manufacturer	ASTECH Angewandte Sensortechnik GmbH
Address	18057 Rostock
	Schonenfahrerstr. 5
	Germany
Product name	VLM500
Description	Optical length and velocity measuring device

Conformity with the following standards

Emitted interference:	EN 61326-1:2013; grid-bound emission
	EN 61326-1:2013; radiated emission
Interference immunity:	EN 61000-6-2:2005 ESD
	EN 61000-6-2:2005 EM field
	EN 61000-6-2:2005 Burst
	EN 61000-6-2:2005 Surge
	EN 61000-6-2:2005 line-induced HF field
Place	Rostock

April 2015

ASTECH Angewandte Sensortechnik GmbH

Jens Mirow Managing director

Date